117 resultados para Light curing unit
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To evaluate the volumetric changes due to polymerization and thermocycling on different resin-composites. Methods: Thirteen A2 Universal Dentin shade resin-composites (n = 10) from eight manufacturers were evaluated (4Seasons, Grandio, Venus, Amelogen Plus, P90, Z350, Esthet-X, Amaris, Vita-l-escence, Natural-Look, Charisma, Z250 and Opallis). The polymerization shrinkage percentage (PS) was calculated using an image measurement device (ACUVOL - Bisco Dental). Equal volumes of material, standardized by a semisphere polyurethane matrix (d = 3mm) were used and, after 5 minutes of relaxation, the baseline volume measurements were obtained with 18 J of energy dose from the LED light-curing unit. Measurements were obtained after 5 minutes and PS values calculated. Specimens were stored in a drydark environment for 24 hours and re-measured. Specimens were then thermocycled in distilled water between 5oC and 55oC for 20,000 cycles, subjected to another volume measurement at 5,000 cycle intervals. Specimens were gently dried prior to each measurement. Results: Repeated measurements were made using ANOVA (α = 0.05) showed that all resin-composite volumes were influenced by the number of cycles. Volumes at 5 minutes post-polymerization (12.47 ± 0.08) were significantly lower than those at baseline (12.80 ± 0.09). Volumes at 24 hours (12.43 ± 0.19) were insignificantly lower than those at 5 minutes postpolymerization. With regards to the impact of thermocycling, all specimens showed statistically significant increases in volume after 5,000 cycles (13.04 ± 0.22). Although statistically different from those after 5,000 cycles, there was no statistically significant difference between volumes measured at 10,000 (12.87±0.21), 15,000 (12.92±0.24), and 20,000 (12.84±0.23) cycles. Conclusion: According to the video-imaging analysis, thermocycling caused a significant expansion in resin-composites tested, the volume increase was not able to...
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light- emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.
Resumo:
This study evaluated the effect of different light energy densities on conversion degree (CD) and Knoop hardness number (KHN) of RelyX ARC (RLX) resin cement. After manipulation according to the manufacturer's instructions, RLX was inserted into a rubber mold (0.8 mm X 5 mm) and covered with a Mylar strip. The tip of the lightcuring unit (LCU) was positioned in contact with the Mylar surface. Quartz-tungsten-halogen (QTH) and light-emitting diode (LED) LCUs with light densities of 10, 20 and 30 J/cm2 were used to light-cure the specimens. After light curing, the specimens were stored dry in lightproof containers at 37°C. After 24 hours, the CD was analyzed by FT-Raman and, after an additional 24-hours, samples were submitted to Knoop hardness testing. The data of the CD (%) and KHN were submitted to two-way ANOVA and the Tukey's test (α=0.05). QTH and LED were effective light curing units. For QTH, there were no differences among the light energy densities for CD or KHN. For LED, there was a significant reduction in CD with the light energy density set at 10 J/cm2. KHN was not influenced by the lightcuring unit and by its light energy density. © Operative Dentistry.
Resumo:
Clinical performance of composite resins depends largely on their mechanical properties,and those are influenced by several factors,such as the light-curing mode. The purpose of this study was to evaluate the influence of different light sources on degree of conversion(DC), Knoop hardness(KHN) and plasticization(P) of a composite resin. Disc-shaped specimens (5 x 2 mm) of Esthet-X(Dentsply) methacrylate-based microhybrid composite were light-cured using quartz-tungsten-halogen (QTH) Optilight Plus(Gnatus) or light-emitting diode(LED) Ultraled(Dabi Atlante) curing units at 400 and 340 mW/cm2 of irradiance, respectively. After 24 h, absorption spectra of composite were obtained using Nexus 670(Nicolet)FT-IR spectrometer in order to calculate the DC.The KHN was measured in the HMV-2000(Shimadzu) microhardness tester under 50 g loads for 15 s, and P was evaluated by percentage reductio of hardness after 24 h of alcohol storage. Data were subjected to t-Student test(alpha=0.05).QTH device showed lower P and higher KHN$ than LED (p<0.05), and no difference between the light-curing units was found for DC (p>0.05). The halogen-curing unit with higher irradiance promoted higher KHN and lower softening in alcohol than LED.
Resumo:
This study evaluated: 1) the effect of different ceramics on light attenuation that could affect microhardness, measured as the Knoop Hardness Number (KHN), of a resin cement immediately and 24 hours after polymerization and 2) the effect of different activation modes (direct light-activation, light activation through ceramics and chemical activation) on the KHN of a resin cement.Resin cement Rely X ARC (3M ESPE) specimens 5.0 mm in diameter and 1.0 nun thick were made in a Teflon mold covered with a polyester film. The cement was directly light activated for 40 seconds with an XL 2500 curing unit (3M ESPE) with 650 mW/cm(2), light activated through ceramic discs of Duceram Plus (DeguDent), Cergogold (DeguDent), IPS Empress (Ivoclar), IPS Empress 2 (Ivoclar), Procera. (NobelBiocare), In Ceram Alumina (Vita) and Cercon (DeguDent), having a 1.2 mm thickness or chemically activated without light application. The resin cement specimens were flattened, and KHN was obtained using an HMV 2 microhardness tester (Shimadzu) with a load of 50 g applied for 15 seconds 100 pin from the irradiated surface immediately and after storage at 37 degrees C for 24 hours. Ten measurements were made for each specimen, with three specimens for each group at each time. The data were submitted to ANOVA and Tukey's test (p=0.05). The KHN of the resin cement was not only affected by the mode of activation, but also by the post-activation testing time. The mean KHN of the resin cement for chemical activation and through all ceramics showed statistically significant lower values compared to direct activation immediately and at 24 hours. The KHN for 24 hours post-activation was always superior to the immediate post-activation test except with direct activation. The most opaque ceramics resulted in the lowest KHN values.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: The aim of this in vitro study was to evaluate the cytotoxicity of resin-modified glass-ionomer lining cements submitted to different curing regimes and applied to an immortalized odontoblast-cell line (MDPC-23). Methods: Forty round-shaped specimens of each experimental material (Fuji Lining LC and Vitrebond) were prepared. They were light-cured for the manufacturers' recommended time (MRT = 30 s), under-cured (0.5 MRT = 15 s), over-cured (1.5 MRT = 45 s) or allowed to dark cure (0 MRT). Sterilized filter papers soaked with either 5 μL of PBS or HEMA were used as negative and positive control, respectively. After placing the specimens individually in wells of 24-well dishes, odontoblast-like cells MDPC-23 (30,000 cells/cm2) were plated in each well and incubated for 72 h in a humidified incubator at 37 °C with 5% CO2 and 95% air. The cytotoxicity was evaluated by the cell metabolism (MTT assay) and cell morphology (SEM). Results: Fuji Lining LC was less cytotoxic than Vitrebond (p < 0.05) in all the experimental conditions. However, the cytotoxicity of Fuji Lining LC was noticeably increased in the absence of light-curing while the same was not observed for Vitrebond. The length of light-curing (15, 30 or 45 s) did not influence the toxicity of both lining materials when they were applied on the odontoblast-cell line MDPC-23. Significance: The light-activation plays an important role in reducing the cytotoxicity of Fuji Lining LC. Following the manufacturer' recommendation regarding the light-curing regime may prevent toxic effect to the pulp cells. © 2005 Academy of Dental Materials.
Resumo:
The aim of this in vitro study was to compare the photoactivation effects of QTH (Quartz-Tungsten-Halogen) and LED (Light-Emitting Diode) on the SBS (Shear Bond Strength) of orthodontic brackets at different debond times. Seventy-two bovine lower incisors were randomly divided into two groups according to the photoactivation system used (QTH or LED). The enamel surfaces were conditioned with Transbond self-etching primer, and APC (Adhesive Pre-Coated) brackets were used in all specimens. Group I was cured with QTH for 20 s and Group II with LED for 10 s. Both groups were subdivided according to the different experimental times after bonding (immediately, 24 h and 7 days). The specimens were tested for SBS and the enamel surfaces were analyzed according to the Adhesive Remnant Index (ARI). The statistical analysis included the Tukey's test to evaluate the main effects of photoactivation and debond time on SBS. The Chi-square test was used to compare the ARI values found for each group, and no statistically significant difference was observed. The debond time of 7 days for QTH photoactivation showed statistically greater values of SBS when compared to the immediate and 24 h periods. There was no statistically significant difference between the QTH and LED groups immediately and after the 24 h period. In conclusion, bonding orthodontic brackets with LED photoactivation for 10 s is suggested because it requires a reduced clinical chair time.
Resumo:
This study evaluated the exposure time of light-curing of the polymers used for cementation on microhardness test in different storage times. The polymers (specifically called resin cements) were RelyX ARC, RelyX U100, and SET. Five specimens of each group were prepared and photo-polymerized with exposure times of 20 s and 180 s, using a LED polymerization unit with wavelength of 440 ~ 480 nm and light output was consistently 1,500 mW/cm2. The Vickers hardness test was performed in a MMT-3 Microhardness Tester. Data were submitted to ANOVA and Tukey's test (α = 0.05). The values of RelyX ARC showed statistically significant difference to groups with light exposure when considering only chemical cure (p < 0.05). The groups with light exposure (20 s and 180 s) showed no significant difference between them (p > 0.05). The RelyX U100 cured only chemically showed statistically significant difference between 48 h and 7 days (p < 0.05). The SET resin cement showed no significant difference to groups without light exposure for all storage times (p > 0.05). The values of hardening of the dual-cured resin cements improved after setting by light and chemical activation demonstrating the importance of light curing. © 2011 by the authors.
Resumo:
This study investigated the physicochemical properties of the new formulation of the glass ionomer cements through hardness test and degree of conversion by infrared spectroscopy (FTIR). Forty specimens (n = 40) were made in a metallic mold (4 mm diameter × 2 mm thickness) with two resin-modified glass ionomer cements, Vitrebond™ and Vitrebond™ Plus (3M/ ESPE). Each specimen was light cured with blue LED with power density of 500 mW/cm2during 30 s. Immediately after light curing, 24h, 48h and 7 days the hardness and degree of conversion was determined. The Vickers hardness was performed by the MMT-3 microhardness tester using load of 50 gm force for 30 seconds. For degree of conversion, the specimens were pulverized, pressed with KBr and analyzed with FT-IR (Nexus 470). The statistical analysis of the data by ANOVA showed that the Vitrebond™ and Vitrebond™ Plus were no difference significant between the same storage times (p > 0.05). For degree of conversion, the Vitrebond™ and Vitrebond™ Plus were statistically different in all storage times after light curing. The Vitrebond™ showed higher values than Vitrebond™ Plus (p < 0.05). The performance of Vitrebond™ had greater results for degree of conversion than Vitrebond™ Plus. The correlation between hardness and degree of conversion was no evidence in this study.