65 resultados para Jeu casual
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Letras - FCLAS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this project the Pattern Recognition Problem is approached with the Support Vector Machines (SVM) technique, a binary method of classification that provides the best solution separating the data in the better way with a hiperplan and an extension of the input space dimension, as a Machine Learning solution. The system aims to classify two classes of pixels chosen by the user in the interface in the interest selection phase and in the background selection phase, generating all the data to be used in the LibSVM library, a library that implements the SVM, illustrating the library operation in a casual way. The data provided by the interface is organized in three types, RGB (Red, Green and Blue color system), texture (calculated) or RGB + texture. At last the project showed successful results, where the classification of the image pixels was showed as been from one of the two classes, from the interest selection area or from the background selection area. The simplest user view of results classification is the RGB type of data arrange, because it’s the most concrete way of data acquisition
Resumo:
The aim of this work is to study some of the density estimation tec- niques and to apply to the segmentation of medical images. Medical images are used to help the diagnostic of tumor diseases as well as to plan and deliver treatment. A computer image is an array of values representing colors in some scale. The smallest element of the image to which it is possible to assign a value is called pixel. Segmen- tation is the process of dividing the image in portions through the classi¯cation of each pixel. The simplest way of classi¯cation is by thresholding, given the number of portions and the threshold values. Another method is constructing a histogram of the pixel values and assign a portion to each pike. The threshold is the mean between two pikes. As the histogram does not form a smooth curve it is di±cult to discern between true pikes and random variation. Density estimation methods allow the estimation of a smooth curve. Image data can be considered as mixture of different densities. In this project parametric and nonparametric methods for density estimation will be addressed and some of them are applied to CT image data
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Psicologia - FCLAS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)