51 resultados para Identification of a putative gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dermatophytes are adapted to infect skin, hair and nails by their ability to utilize keratin as a nutrient source. Trichophyton rubrum is an anthropophilic fungus, causing up to 90% of chronic cases of dermatophytosis. The understanding of the complex interactions between the fungus and its host should include the identification of genes expressed during infection. To identify the genes involved in the infection process, representational difference analysis (RDA) was applied to two cDNA populations from T. rubrum, one transcribed from the RNA of fungus cultured in the presence of keratin and the other from RNA generated during fungal growth in minimal medium. The analysis identified differentially expressed transcripts. Genes related to signal transduction, membrane protein, oxidative stress response, and some putative virulence factors were up-regulated during the contact of the fungus with keratin. The expression patterns of these genes were also verified by real-time PCR, in conidia of T. rubrum infecting primarily cultured human keratinocytes in vitro, revealing their potential role in the infective process. A better understanding of this interaction will contribute significantly to our knowledge of the process of dermatophyte infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sexual development prior to gonadal sex differentiation is regulated by various molecular mechanisms. In fish, a molecular sex-differentiation period has been identified in species for which sex can be ascertained prior to gonadal sex differentiation. The present study was designed to identify such a period in a species for which no genetic sex markers or monosex populations are available. Siberian sturgeons undergo a slow sex-differentiation process over several months, so gonad morphology and gene expression was tracked in fish from ages 3-27 months to identify the sex-differentiation period. The genes amh, sox9, and dmrt1 were selected as male gonad markers; cyp19a1a and foxl2a as female gonad markers; and cyp17a1 and ar as markers of steroid synthesis and steroid receptivity. Sex differentiation occurred at 8 months, and was preceded by a molecular sex-differentiation period at 3-4 months, at which time all of the genes except ar showed clear expression peaks. amh and sox9 expression seemed to be involved in male sexual development whereas dmrt1, a gene involved in testis development in metazoans, unexpectedly showed a pattern similar to those of the genes known to be involved in female gonadal sex differentiation (cyp19a1 and foxl2a). In conclusion, the timing of and gene candidates involved with molecular sex differentiation in the Siberian sturgeon were identified. Mol. Reprod. Dev. 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tambaqui (Colossoma macropomum) is the fish species most commonly raised in the Brazilian fish farms. The species is highly adaptable to captive conditions, and is both fast-growing and relatively fecund. In recent years, artificial breeding has produced hybrids with Characiform species, known as “Tambacu” and “Tambatinga”. Identifying hybrids is a difficult process, given their morphological similarities with the parent species. This study presents an innovative molecular approach to the identification of hybrids based primarily on Multiplex PCR of a nuclear gene (a-Tropomyosin), which was tested on 93 specimens obtained from fish farms in northern Brazil. The sequencing of a 505-bp fragment of the Control Region (CR) permitted the identification of the maternal lineage of the specimen, all of which corresponded to C. macropomum. Unexpectedly, only two CR haplotype were found in 93 samples, a very low genetic diversity for the pisciculture of Tambaqui. Multiplex PCR identified 42 hybrids, in contrast with 23 identified by the supplier on the basis of external morphology. This innovative tool has considerable potential for the development of the Brazilian aquaculture, given the possibility of the systematic identification of the genetic traits of both fry-producing stocks, and the fry and juveniles raised in farms.