84 resultados para INSECT NUTRITION
Resumo:
Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.
Resumo:
Coffea canephora plants (clone INCAPER-99) were submitted to low N (LN) or high N (HN) applications and two watering regimes (daily irrigation and irrigation every 5 days for a month). Although water potential was not altered significantly by N, HN plants showed higher relative water content than did LN plants under water deficit. Only HN plants exhibited some ability for osmotic adjustment. Plants from both N treatments increased their cell wall rigidity under drought, with a more pronounced augmentation in HN plants. In well-watered plants, carbon assimilation rate increased with increasing N while stomatal conductance did not respond to N supply. Under drought conditions, carbon assimilation decreased by 68-80% compared to well-watered plants, whereas stomatal conductance and transpiration rate declined by 35% irrespective of the N applications. Stable carbon isotope analysis, combined with leaf gas exchange measurements, indicated that regardless of the watering treatments, N increased the long-term water use efficiency through changes in carbon assimilation with little or no effect on stomatal behaviour.
Resumo:
Objective: To review the literature on the role of calcium, phosphorus and trace elements in the nutrition of extremely low birth weight infants, considering their importance for metabolism, bone mineralization and as dietary components. Sources of data: MEDLINE, the Cochrane Database of Systematic Reviews and books on nutrition were searched between 1994 and 2004. Original research studies and reviews were selected. Summary of the findings: Extremely preterm infants are frequently growth-restricted at hospital discharge as a consequence of difficulties in the provision of adequate nutrition. The long-term effects of this growth restriction need to be determined. There is a paucity of studies about the role of minerals, especially micronutrients, in the nutrition of extremely preterm infants. The principal focus of this review was on calcium and phosphorus metabolism, bone mineralization and parenteral and enteral supplementation. A critical evaluation of post-discharge nutrition and its influence upon growth and bone mineralization was presented. Selenium and zinc requirements and the role of selenium as an antioxidant with possible effects on free radical diseases of the preterm infant were discussed. Conclusions: Extremely preterm infants have low mineral reserves and, as a consequence, may have deficiencies in the postnatal period if they do not receive parenteral or enteral supplementation. More studies are needed to elucidate the actual requirements and the appropriate supplementation of micronutrients. There are controversies about the outcome and the influence of post-discharge nutrition on bone disease of prematurity. Copyright © 2005 by Sociedade Brasileira de Pediatria.
Resumo:
We show for the first time that the ventral diverticulum of the mosquito gut (impermeable sugar storage organ) harbors microorganisms. The gut diverticulum from newly emerged and non-fed Aedes aegypti was dissected under aseptic conditions, homogenized and plated on BHI medium. Microbial isolates were identified by sequencing of 16S rDNA for bacteria and 28S rDNA for yeast. A direct DNA extraction from Ae. aegypti gut diverticulum was also performed. The bacterial isolates were: Bacillus sp., Bacillus subtilis and Serratia sp. The latter was the predominant bacteria found in our isolations. The yeast species identified was Pichia caribbica.
Resumo:
Background: Staphylococcus is a clinically important genus because of its capacity to produce enterotoxins and to cause food poisoning. Staphylococci are the most frequent microorganisms of the skin and mucosal microbiota, with an estimated 20 to 40% of individuals carrying these bacteria on their hands or nose. Since nutrition professionals are involved in the handling and preparation of foods and are possible carriers of these bacteria, the objective of this study was to investigate the presence of Staphylococcus on the hands and in the nasal fossae of undergraduate nutrition students and to determine the enterotoxigenic capacity of these microorganisms. Methods and Findings: A total of 201 strains were isolated from the hands and nose of 61 nutrition students. Of these, 180 (89.5%) were identified as coagulasenegative staphylococci and 21 (10.5%) as S. aureus. Thirty-seven (18.4%) Staphylococcus isolates were producers of enterotoxin A. Toxin production was detected in 5 (19%) of the S. aureus isolates and in 31 (17.2%) of the coagulase-negative staphylococci. Conclusions: This study demonstrated a large number of enterotoxin-producing staphylococci on the hands and nose of nutrition students and professionals involved in the handling and preparations of foods. These findings indicate the need for adequate hygiene measures to prevent food poisoning. © iMedPub.
Resumo:
In this study, we used data from both experiments and mathematical simulations to analyze the consequences of the interacting effects of intraguild predation (IGP), cannibalism and parasitism occurring in isolation and simultaneously in trophic interactions involving two blowfly species under shared parasitism. We conducted experiments to determine the short-term response of two blowfly species to these interactions with respect to their persistence. A mathematical model was employed to extend the results obtained from these experiments to the long-term consequences of these interactions for the persistence of the blowfly species. Our experimental results revealed that IGP attenuated the strength of the effects of cannibalism and parasitism between blowfly host species, increasing the probability of persistence of both populations. The simulations obtained from the mathematical model indicated that IGP is a key interaction for the long-term dynamics of this system. The presence of different species interacting in a tri-trophic system relaxed the severity of the effects of a particular interaction between two species, changing species abundances and promoting persistence through time. This pattern was related to indirect interactions with a third species, the parasitoid species included in this study. © 2012 The Society of Population Ecology and Springer Japan.
Resumo:
A better understanding of the differential growth of upland rice (Oryza sativa L.) cultivars with increasing soil S availability could help improve rice yield under upland conditions. The objective of this study was to evaluate root and shoot growth and nutrition of upland traditional and modern rice cultivars as affected by S availability. The experimental design was completely randomized in a 3 (rates of S) × 3 (cultivars) factorial with four replications. Low availability of S in the soil reduces root and shoot development and the efficiency of N, P, and S uptake, as well as the concentration and content of these nutrients in rice cultivars. At 0 mg dm-3 of S, rice cultivars prioritize root growth over shoots, and the traditional cultivar does so with greater intensity. Our results suggested that more development of traditional cultivars under low S availability facilitates its adaptation in soils under this condition. On the other hand, the intermediate and modern cultivars are more responsive to S fertilization. Moreover, S fertilization allows significant increases in upland rice growth and must be considered in cropping systems aiming for high yields. © Soil Science Society of America.
Resumo:
Enterococcus faecium has emerged as one of the most important pathogens in healthcare-associated infections worldwide due to its intrinsic and acquired resistance to many antibiotics, including vancomycin. Antimicrobial photodynamic therapy (aPDT) is an alternative therapeutic platform that is currently under investigation for the control and treatment of infections. PDT is based on the use of photoactive dye molecules, widely known as photosensitizer (PS). PS, upon irradiation with visible light, produces reactive oxygen species that can destroy lipids and proteins causing cell death. We employed Galleria mellonella (the greater wax moth) caterpillar fatally infected with E. faecium to develop an invertebrate host model system that can be used to study the antimicrobial PDT (alone or combined with antibiotics). In the establishment of infection by E. faecium in G. mellonella, we found that the G. mellonella death rate was dependent on the number of bacterial cells injected into the insect hemocoel and all E. faecium strains tested were capable of infecting and killing G. mellonella. Antibiotic treatment with ampicillin, gentamicin or the combination of ampicillin and gentamicin prolonged caterpillar survival infected by E. faecium (P = 0.0003, P = 0.0001 and P = 0.0001, respectively). In the study of antimicrobial PDT, we verified that methylene blue (MB) injected into the insect followed by whole body illumination prolonged the caterpillar survival (P = 0.0192). Interestingly, combination therapy of larvae infected with vancomycin-resistant E. faecium, with antimicrobial PDT followed by vancomycin, significantly prolonged the survival of the caterpillars when compared to either antimicrobial PDT (P = 0.0095) or vancomycin treatment alone (P = 0.0025), suggesting that the aPDT made the vancomycin resistant E. faecium strain more susceptible to vancomycin action. In summary, G. mellonella provides an invertebrate model host to study the antimicrobial PDT and to explore combinatorial aPDT-based treatments.
Resumo:
Recent studies have shown that ingestion by the army worm Spodoptera frugiperda of Cry1Ac toxin from Bt cotton promotes histochemical and ultrastructural changes in the digestive cells of the predatory pentatomid bug Podisus nigrispinus. Therefore, mindful of the changes in the midgut of the predator, which represents the first line of defence in this insect, our aim was to test the hypothesis that the consumption of Bt cotton-fed S. frugiperda by P. nigrispinus might lead to alterations in components of the immune system of P. nigrispinus. The Cry1Ac toxin level in the leaves of Bt cotton, nitric oxide, phenoloxidase activity, and total proteins were quantified by ELISA. Total and differential hemocyte counts were evaluated, and hemocyte ultrastructure analysis was undertaken. We found that ingestion of the prey fed daily with approximately 23 ± 0.70 ng g-1 Cry1Ac by wet weight of leaves, and expressed by the Bt cotton, induces small ultrastructural changes in the predator's granulocytes and plasmatocytes. However, these changes did not affect the total number and differential and humoral variables analyzed for the bug's hemocytes. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Iron (Fe) is essential for chlorophyll formation and plant growth. Irondeficiency chlorosis is a major nutritional disorder in several fruit trees cultivated in calcareous and alkaline soils, reducing fruit yield and quality and causing heavy economic losses. Since chelated Fe, the most widespread fertilizers used for preventing or curing Fe deficiency, pose risks of environmental pollution, the development of sustainable agronomic alternatives represents a priority for the fruit industry. In this work, we investigated the effectiveness of a bovine blood-derived product (BB; 0,125% Fe) for preventing Fe-deficiency in grapevine plants. During the vegetative season 2011 potted plants of five graft combinations: Sangiovese/S4O, Cabernet Sauvignon/S4O and Cabernet Sauvignon/140 Ruggeri, 140 Ruggeri/Cabernet Sauvignon, Vitis riparia/Cabernet Sauvignon were grown on calcareous soil. Soil treatments included: 1) Control; 2) Fe-EDDHA (Fe 6%); 3) Bovine-Blood (5 g/L); 4) Bovine-Blood (20 g/L). With the exception of Cabernet Sauvignon/S4O plants, Fe-EDDHA increased SPAD units (leaf chlorophyll content). Bovine-blood at low concentrations had similar or higher SPAD units than Fe-EDDHA. Increasing concentration resulted in further increases in SPAD units only in some graft combinations. Data highlight the efficiency of Fe blood-compound in the prevention of grapevine Fe-deficiency over one growing season.
Resumo:
The Atlantic Forest domain, one of the 25 world's hotspots for biodiversity, has experienced dramatic changes in its landscape. While the loss of species diversity is well documented, functional diversity has not received the same amount of attention. In this study, we evaluated functional diversity of insects in streams utilizing three indices: functional diversity (FD), functional dispersion (FDis), and functional divergence (FDiv), seeking to understand the roles of three predictor sets in explaining functional patterns: (1) bioclimatic and landscape variables; (2) spatial variables; and (3) local environmental variables. We determined the amount of variation in different measures of functional diversity that was explained by each predictor set and their interplays using variation partitioning. Our study showed that variation in functional diversity is better explained by a set of variables linked to different scales dependent on spatial structures, indicating the importance of landscape and mainly environmental variables in the functional organization of aquatic insect communities, and that the relative importance of predictor sets depends on the indices considered. Variation in FD was better explained by the interplay among the three predictor sets and by local environmental variables, whereas variation in FDis was better explained by spatial variables and by the interplay between environmental and spatial variables. Variation in FDiv was not significantly explained by any predictors. Our study adds more evidence on the harmful effects caused by landscape changes on biodiversity in the Atlantic Forest, suggesting that these effects also influence the functional organization of stream insect communities. © 2013 The Author(s) Journal compilation © 2013 by The Association for Tropical Biology and Conservation.
Resumo:
Silicon can alleviate biotic and abiotic stresses in several crops, and it has beneficial effects on plants under nonstressed conditions. However, there is still doubt about foliar-applied Si efficiency and Si effects on mineral nutrition, physiological processes, and growth of potato (Solanum tuberosum L.) plants under wellwatered conditions. The objective of this study was to evaluate the effect of soil and foliar application of soluble Si on Si accumulation, nutrients, and pigments concentration as well as gas exchange and growth of potato plants. The experiment was conducted under greenhouse conditions in pots containing 35 dm3 of a Typic Acrortox soil. The treatments consisted of a control (no Si application), soil application of soluble Si (50 mg dm-3 Si), and foliar application of soluble Si (three sprays of 1.425 mM Si water solution, prepared with a soluble concentrate stabilized silicic acid), with eight replications. Both soil and foliar application of Si resulted in higher Si accumulation in the whole plant. Foliar application of Si resulted in the greatest Si concentration in leaves, and soil application increased Si concentration in leaves, stems, and roots. Silicon application, regardless of the application method, increased leaf area, specific leaf area, and pigment concentration (chlorophyll a and carotenoids) as well as photosynthesis and transpiration rates of wellwatered potato plants. However, only soil application increased P concentration in leaves and dry weight of leaves and stems. © Crop Science Society of America.
Resumo:
DNA methylation plays an important role in the epigenetic control of developmental and behavioral plasticity, with connections to the generation of striking phenotypic differences between castes (larger, reproductive queens and smaller, non-reproductive workers) in honeybees and ants. Here, we provide the first comparative investigation of caste- and life stage-associated DNA methylation in several species of bees and vespid wasps displaying different levels of social organization. Our results reveal moderate levels of DNA methylation in most bees and wasps, with no clear relationship to the level of sociality. Strikingly, primitively social Polistes dominula paper wasps show unusually high overall DNA methylation and caste-related differences in site-specific methylation. These results suggest DNA methylation may play a role in the regulation of behavioral and physiological differences in primitively social species with more flexible caste differences. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The present study evaluated the efficacy of fluazuron (active ingredient of the acaricide Acatak®) and its effects on Rhipicephalus sanguineus nymphs fed on rabbits exposed to different doses of this insect growth regulator. Three different doses of fluazuron (20 mg/kg, 40 mg/kg, and 80 mg/kg) were applied on the back of hosts (via pour on), while distilled water was applied to the Control group. On the first day of treatment with fluazuron (24 h), hosts were artificially infested with R. sanguineus nymphs. Once fully engorged, nymphs were removed and placed in identified Petri dishes in Biochemical Oxygen Demand (BOD) incubator for 7 days. After this period, engorged nymphs were processed for ultramorphological analysis. The results revealed alterations in the ultramorphology of many chitinous structures (smaller hypostome and chelicerae, less sclerotized scutum, fewer sensilla, fewer pores, absence of grooves, marginal and cervical strips and festoons in the body, even the anal plaque was damaged) that play essential roles for the survivor of ticks and that can compromise the total or partial development of nymphs and emergence of adults after periodic molting. Our findings confirm the efficacy of fluazuron, a more specific and less aggressive chemical to the environment and human health, and that does not induce resistance, in nymphs of the tick R. sanguineus in artificially infested rabbits treated with this arthropod growth regulator (AGR), indicating that it could be used in the control of this stage of the biological cycle of the tick R. sanguineus. © 2013 Wiley Periodicals, Inc.