104 resultados para Hydroxyl
Resumo:
We compare the effect of organic (Tiron (R)) and inorganic (Mn(11)) additives on the low temperature (< 600 degrees C) densification of the sol-gel dip-coated SnO2 films. The structural and compositional properties of the samples were investigated by X-ray reflectometry (XRR), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). The results suggest that the replacement of hydroxyl groups at the particle surface by Tiron (R) reduces the level of agglomeration of the sol, increasing the particles packing and the apparent density of the coatings. Undoped and Mn-doped films drawn from a Tiron (R) containing suspension show after firing at 500 degrees C a porosity reduction of 12 and 8.6%, respectively. The porosity decrease is less pronounced (4.3%) for the film without additives. Both XAS and XPS data show the presence of trivalent manganese. The formation of a non-homogeneous solid solution characterised by the presence of Mn(111) replacing tin atom near to the crystallite surface was evidenced by XAS. Additionally, XPS results reveal the presence of metallic Sn at the surface of films containing Tirono. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this study undoped and Cr, Sb or Mo doped TiO(2) were synthesized by polymeric precursor method and characterized by X-ray diffraction, UV-VIS spectroscopy, infrared spectroscopy and thermogravimetry (TG). The TG curves showed a continuous mass loss assigned to the hydroxyl elimination and Cr(6+) reduction. Doped TiO(2) samples showed a higher mass loss assigned to water and gas elimination at lower temperatures. In these doped materials a decrease in the anatase-rutile phase transition temperature was observed. After calcination at 1,000 A degrees C, rutile was obtained as a single phase material without the presence of Cr(6+).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Possible molecular mechanisms of the gas-phase ion/molecule reaction of VO2+ in its lowest singlet and triplet states ((1)A(1)/(3)A '') with propyne have been investigated theoretically by density functional theory (DFT) methods. The geometries, energetic values, and bonding features of all stationary and intersystem crossing points involved in the five different reaction pathways (paths 1-5), in both high-spin (triplet) and low-spin (singlet) surfaces, are reported and analyzed. The oxidation reaction starts by a hydrogen transfer from propyne molecule to the vanadyl complex, followed by oxygen migration to the hydrocarbon moiety. A hydride transfer process to the vanadium atom opens four different reaction courses, paths 1-4, while path 5 arises from a hydrogen transfer process to the hydroxyl group. Five crossing points between high- and low-spin states are found: one of them takes place before the first branching point, while the others occur along path 1. Four different exit channels are found: elimination of hydrogen molecule to yield propynaldehyde and VO+ ((1)Sigma/(3)Sigma); formation of propynaldehyde and the moiety V-(OH2)(+); and two elimination processes of water molecule to yield cationic products, Prod-fc(+) and Prod-dc(+) where the vanadium atom adopts a four- and di-coordinate structure, respectively.
Resumo:
The spray-pyrolysis (SP) synthesis technique has been employed to obtain SiO2:Eu3+ and gamma-AlOOH:Eu3+, It was possible to obtain sub-micrometric spherical particles of SiO2 with luminescent Eu3+ ions bonded to the silica surface or embedded in amorphous silica beads, by controlling the synthesis and annealing process. Boehmite y-AlOOH doped with Eu3+ nanoparticles were synthesized by SP at moderate temperature (200 degrees C) with Eu3+ ions bonded to the surface hydroxyls of the boehmite nanocrystals. Luminescent nanocomposites were obtained by controlled reaction of gamma-AlOOH:Eu3+ nanocrystals with ASN (asparagine). In these nano-composites, the Eu3+ are held at the surface of the boehmite nanocrystals and partially shielded from interactions with additional luminescence quenchers (hydroxyl groups, water molecules). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Water-dispersed magnetite nanoparticle synthesis from iron(II) chloride in dimethyl sulfoxide (DMSO)-water solution at different DMSO-water ratios in alkaline medium was reported. TEM and XRD results suggest a single-crystal formation with mean particle size in the range 4-27 nm. Magnetic nanoparticles are formed by the oxidative hydrolysis reaction from green rust species that leads to FeOOH formation, followed by autocatalysis of the adsorbed available Fe(II) on the FeOOH surfaces. The available hydroxyl groups seem to be dependent on the DMSO-water ratio due to strong molecular interactions presented by the solvent mixture. Goethite phase on the magnetite surface was observed by XRD data only for sample synthesized in the absence of DMSO. In addition, cyclic voltammetry with carbon paste electroactive electrode (CV-CPEE) results reveal two reduction peaks near 0 and +400 mV associated with the presence of iron(III) in different chemical environments related to the surface composition of magnetite nanoparticles. The peak near +400 mV is related to a passivate thin layer surface such as goethite on the magnetite nanoparticle, assigned to the intensive hydrolysis reaction due to strong interactions between DMSO-water molecules in the initial solvent mixture that result in a hydroxyl group excess in the medium. Pure magnetite phase was only observed in the samples prepared at 30% (30W) and 80% (80W) water in DMSO in agreement with the structured molecular solvent cluster formation. The goethite phase present on the, magnetite nanoparticle surface like a thin passivate layer only was detectable using CV-CPEE, which is a very efficient, cheap, and powerful tool for surface characterization, and it is able to determine the passivate oxyhydroxide or oxide thin layer presence on the nanoparticle surface.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this study was to investigate long-term pH changes in cavities prepared in root surface dentin of extracted teeth after obturation of the root canal with gutta-percha and a variety of sealers containing calcium hydroxide. After cleaning and shaping, root canals in 50 recently extracted, human single-rooted teeth were divided into five groups. Each of four groups was obturated with gutta-percha and either Sealapex, Sealer 26, Apexit, or CRCS, all of which contain calcium hydroxide. The remaining group served as the control and was not obturated with gutta-percha or sealer. Cavities were prepared in the facial surface of the roots in the cervical and middle regions. The pH was measured in these dentinal cavities at the initiation of the experiment, and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days after obturation. Results indicate that the pH at the surface of the root does not become alkaline when calcium hydroxide cements are used as root canal sealers. Regardless of the sealer used, the observed pattern of pH change was not different from that seen in the control group of roots that were not treated with sealer. It is concluded that calcium hydroxide-containing cements, although suitable for use as root canal sealants, do not produce an alkaline pH at the root surface. If such a pH change is related to treatment of root resorption, these sealants do not contribute to this treatment. Copyright © 1996 by The American Association of Endodontists.
Resumo:
The purpose of this study was to determine the pH, after defined periods of time, in cavities prepared in the facial surface of the cervical, middle, and apical regions of roots obturated with calcium hydroxide pastes. Root canal instrumentation was performed on 40 recently extracted, single-rooted human teeth. Cavities 1.5 mm in diameter and 0.75 mm in depth were prepared in the cervical, middle, and apical regions of the facial surface of each root. Teeth were randomly divided into four groups. One group was left unobturated and served as a control. The three remaining groups were obturated with either aqueous calcium hydroxide, calcium hydroxide mixed with camphorated monochlorophenol, or Pulpdent pastes. Access cavities and apical foramina were closed with Cavit. Each tooth was stored individually in a vial containing unbuffered isotonic saline. pH at the surface was measured in the cervical, middle, and apical cavities at 0 and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days. Results indicate that hydroxyl ions derived from calcium hydroxide pastes diffused through root dentin at all regions over the experimental period of 120 days. The pattern of pH change at the tooth surface was similar in all regions of the root, regardless of the type of calcium hydroxide paste used. This was a rapid rise in pH from a control value of pH 7.6, to greater than pH 9.5 by 3 days, followed by a small decline to pH 9.0 over the next 18 days, before finally rising and remaining at, or above pH 10.0 for the remainder of the experimental period. Pulpdent paste in the apical region was the only exception in this pattern, producing a pH rise nearly one full unit below the other pastes, pH 9.3. These results indicate that, for all pastes tested, a high pH is maintained at the root surface for at least 120 days. Copyright © 1996 by The American Association of Endodontists.
Resumo:
Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Chromatographic and electroanalytical methods were developed to detect and quantify Sudan II (SD-II) dye in fuel ethanol samples. Sudan II is reduced at +0.50 V vs. Ag/AgCl on a glassy carbon electrode using Britton-Robinson buffer (pH 4.0) and N,N-dimethylformamide (70:30, v/v) + sodium dioctyl sulfosuccinate surfactant as supporting electrolyte, due to the azo group. This is the basis for its determination by square-wave voltammetry (SWV). Using the optimized conditions, it is possible to get a linear calibration curve from 3.00×10-6 to 1.80×10-5 mol L-1 (r = 0.998) with limits of detection (LOD) and quantification (LOQ) of 2.05×10-6 and 6.76×10-6 mol L-1, respectively. In addition, the hydroxyl substituent in the SD-II dye is also oxidized at +0.85 V vs. Ag/AgCl, which was conveniently used for its determination by high-performance liquid chromatography coupled to electrochemical detection (HPLC-ED). Under the optimized condition, the SD-II dye was eluted and separated using a reversed-phase column (cyanopropyl, CN) using isocratic elution with the mobile phase containing acetonitrile and aqueous lithium chloride (5.00×10-4 mol L-1) at 70:30 (v/v) and a flow rate of 1.2 mL min-1. Linear calibration curves were obtained from 3.00×10-7 to 2.00×10-6 mol L-1 (r = 0.999) with LOD and LOQ of 3.10×10-8 and 1.05×10-7 mol L-1, respectively. Both methods were simple, fast and suitable to detect and quantify the dye in fuel ethanol samples at recovery values between 83.0 to 102% (SWV) and 88.0 to 112% (HPLC-ED) with satisfactory precision and accuracy.
Resumo:
We have investigated some diamondoids encapsulation into single walled carbon nanotubes (with diameters ranging from1.0 up to 2.2 nm) using fully atomistic molecular dynamics simulations. Diamondoids are the smallest hydrogen-terminated nanosized diamond-like molecules. Diamondois have been investigated for a large class of applications, ranging from oil industry to pharmaceuticals. Molecular ordered phases were observed for the encapsulation of adamantane, diamantane, and dihydroxy diamantanes. Chiral ordered phases, such as; double, triple, 4- and 5-stranded helices were also observed for those diamondoids. Our results also indicate that the modification of diamondoids through chemical functionalization with hydroxyl groups can lead to an enhancement of the molecular packing inside the carbon nanotubes in comparison to non-functionalized molecules. For larger diamondoids (such as, adamantane tetramers), we have not observed long-range ordering, but only a tendency of incomplete helical structural formation. © 2012 Materials Research Society.
Resumo:
New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm-1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm-1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm-1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.