50 resultados para Hartree Fock Quantum Helium


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relation between the spin and the mass of an infinite number of particles in a q-deformed dual string theory is studied. For the deformation parameter q a root of unity, in addition to the relation of such values of q with the rational conformal field theory, the Fock space of each oscillator mode in the Fubini-Veneziano operator formulation becomes truncated. Thus, based on general physical grounds, the resulting spin-(mass)2 relation is expected to be below the usual linear trajectory. For such specific values of q, we find that the linear Regge trajectory turns into a square-root trajectory as the mass increases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hyperspherical adiabatic approach is used to obtain the highly excited series 1sns 1S e and 1s(n + 1)p 1P o of the helium atom. The introduction of appropriate asymptotic conditions at large values of the hyperspherical radius results in a stable algorithm that allows the calculation of the full atomic spectrum with precision of a few parts per million. Comparison with the variational calculations available in the literature shows that the accuracy of the results improves with increasing principal quantum number. We present the energies up to n = 31 which is the typical value used in multiphoton excitation experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show that an extra constant of motion with an analytic form can exist in the neighborhood of some discrete circular orbits of helium when one includes retardation and self-interaction effects. The energies of these discrete stable circular orbits are in the correct atomic magnitude. The highest frequency in the stable manifold of one such orbit agrees with the highest frequency sharp line of parahelium to within 2%. The generic term of the frequency in the stable manifold to higher orbits is also in agreement with the asymptotic form of quantum mechanics for helium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In non-extensive statistical mechanics [14], it is a nonsense statement to say that the entropy of a system is extensive (or not), without mentioning a law of composition of its elements. In this theory quantum correlations might be perceived through quantum information process. This article, that is an extension of recent work [4], is a comparative study between the entropies of Von Neumann and of Tsallis, with some implementations of the effect of entropy in quantum entanglement, important as a process for transmission of quantum information. We consider two factorized (Fock number) states, which interact through a beam splitter bilinear Hamiltonian with two entries. This comparison showed us that the entropies of Tsallis and Von Neumann behave differently depending on the reflectance of the beam splitter. © 2011 Academic Publications.