197 resultados para Hamiltonian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The frame and scale dependence of the pair-term contribution to the electromagnetic form factor of a spin-zero composite system of two-fermions is studied within the Light Front. The form factor is evaluated from the plus-component of the current in the Breit frame, using for the first time a nonconstant, symmetric ansatz for the Bethe-Salpeter amplitude. The frame dependence is analyzed by allowing a nonvanishing plus component of the momentum transfer, while the dynamical scale is set by the masses of the constituents and by mass and size of the composite system. A transverse momentum distribution, associated with the Bethe-Salpeter amplitude, is introduced which allows to define strongly and weakly relativistic systems. In particular, for strongly relativistic systems, the pair term vanishes for the Drell-Yan condition, while is dominant for momentum transfer along the light-front direction. For a weakly relativistic system, fitted to the deuteron scale, the pair term is negligible up to momentum transfers of 1 (GeV/c)(2). A comparison with results obtained within the Front-Form Hamiltonian dynamics with a fixed number of constituents is also presented. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to implement the mechanism of link rearrangement predicted in the strong coupling limit of Hamiltonian lattice QCD - in a constituent quark model in which constituent quarks, links and junctions are the dominant degrees of freedom. The implications of link rearrangement for the meson-meson interaction are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonvanishing cosmological term in Einstein's equations implies a nonvanishing spacetime curvature even in the absence of any kind of matter. It would, in consequence, affect many of the underlying kinematic tenets of physical theory. The usual commutative spacetime translations of the Poincare group would be replaced by the mixed conformal translations of the de Sitter group, leading to obvious alterations in elementary concepts such as time, energy and momentum. Although negligible at small scales, such modifications may come to have important consequences both in the large and for the inflationary picture of the early Universe. A qualitative discussion is presented, which suggests deep changes in Hamiltonian, Quantum and Statistical Mechanics. In the primeval universe as described by the standard cosmological model, in particular, the equations of state of the matter sources could be quite different from those usually introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we reexamine quantum electrodynamics of atomic electrons in the Coulomb gauge in the dipole approximation and calculate the shift of atomic energy levels in the context of Dalibard, Dupont-Roc and Cohen-Tannoudji formalism by considering the variation rates of physical observable. We then analyze the physical interpretation of the ordering of operators in the dipole approximation interaction Hamiltonian in terms of field fluctuations and self-reaction of atomic electrons, discussing the arbitrariness in the statistical functions in second-order bound-state perturbation theory. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Renormalized fixed-point Hamiltonians are formulated for systems described by interactions that originally contain point-like singularities (as the Dirac-delta and/or its derivatives). They express the renormalization group invariance of quantum mechanics. The present approach for the renormalization scheme relies on a subtracted T-matrix equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform variational calculations of heavy-light meson masses using a fitted formula to a lattice two-quark potential. We examine the light quark mass dependence of the meson mass using the Schrodinger equation and the Dirac equation. For the Dirac equation, a saddle-point variational principle is employed, since the Dirac Hamiltonian is not bound from below.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we present a formal generalization of the Hamilton-Jacobi formalism, recently developed For singular systems, to include the case of Lagrangians containing variables which are elements of Berezin algebra. We derive the Hamilton-Jacobi equation for such systems, analyzing the singular case in order to obtain the equations of motion as total differential equations and study the integrability conditions for such equations. An example is solved using both Hamilton-Jacobi and Dirac's Hamiltonian formalisms and the results are compared. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a Coulomb gauge quark model which includes an explicit construct for a nontrivial vacuum structure in QCD. The dynamics is described by a Hamiltonain that contains a linearly rising confining potential and longitudinal and transverse Coulomb-type interactions. The Coulomb potential gives rise to ultraviolate divergences which are non-perturbatively renormalized by adding appropriate counter terms to the Hamiltonian. The equation of state for u and d quark matter at zero temperature is derived in the Hartree-Fock approximation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present in this work a generalization of the solution of Gorenstein and Yang for a consistent thermodynamics for systems with a temperature dependent Hamiltonian. We show that there is a large class of solutions, work out three particular ones. and discuss their physical relevance. We apply the particular solutions for an ideal gas of quasi-gluons, and compare the calculation to lattice and perturbative QCD results. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conformal affine sl(2) Toda model coupled to the matter field is treated as a constrained system in the context of Faddeev-Jackiw and the (constrained) symplectic schemes. We recover from this theory either the sine-Gordon or the massive Thirring model, through a process of Hamiltonian reduction, considering the equivalence of the Noether and topological currrents as a constraint and gauge fixing the conformal symmetry. (C) 2000 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We make a careful study about the nonrelativistic reduction of one-meson-exchange models for the nonmesonic weak hypernuclear decay. Starting from a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (pi, eta, K, rho, omega, K*), the strangeness-changing weak LambdaN --> NN transition potential is derived, including two effects that have been systematically omitted in the literature, or, at best, only partly considered. These are the kinematical effects due to the difference between the lambda and nucleon masses, and the first-order nonlocality corrections, i.e., those involving up to first-order differential operators. Our analysis clearly shows that the main kinematical effect on the local contributions is the reduction of the effective pion mass. The kinematical effect on the nonlocal contributions is more complicated, since it activates several new terms that would otherwise remain dormant. Numerical results for C-12(Lambda) and He-5(Lambda) are presented and they show that the combined kinematical plus nonlocal corrections have an appreciable influence on the partial decay rates. However, this is somewhat diminished in the main decay observables: the total nonmesonic rate, Gamma(nm), the neutron-to-proton branching ratio, Gamma(n)/Gamma(p), and the asymmetry parameter, a(Lambda). The latter two still cannot be reconciled with the available experimental data. The existing theoretical predictions for the sign of a(Lambda) in He-5(Lambda) are confirmed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model. (C) 1998 Academic Press.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)