94 resultados para Generalized seduction
Resumo:
Via an operator continued fraction scheme, we expand Kramers equation in the high friction limit. Then all distribution moments are expressed in terms of the first momemt (particle density). The latter satisfies a generalized Smoluchowsky equation. As an application, we present the nonequilibrium thermodynamics and hydrodynamical picture for the one-dimensional Brownian motion. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We derive the Wess-Zumino scalar term of the generalized Schwinger model both in the singular and nonsingular cases by using BRST-BFV framework. The photon propagators are also computed in the extended Lorentz gauge.
Resumo:
A class of shape-invariant bound-state problems which represent two-level systems are introduced. It is shown that the coupled-channel Hamiltonians obtained correspond to the generalization of the Jaynes-Cummings Hamiltonian.
Resumo:
in this paper, we derive an explicit expression for the parameter sequences of a chain sequence in terms of the corresponding orthogonal polynomials and their associated polynomials. We use this to study the orthogonal polynomials K-n((lambda.,M,k)) associated with the probability measure dphi(lambda,M,k;x), which is the Gegenbauer measure of parameter lambda + 1 with two additional mass points at +/-k. When k = 1 we obtain information on the polynomials K-n((lambda.,M)) which are the symmetric Koornwinder polynomials. Monotonicity properties of the zeros of K-n((lambda,M,k)) in relation to M and k are also given. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
A Lagrangian based heuristic is proposed for many-to-many assignment problems taking into account capacity limits for task and agents. A modified Lagrangian bound studied earlier by the authors is presented and a greedy heuristic is then applied to get a feasible Lagrangian-based solution. The latter is also used to speed up the subgradient scheme to solve the modified Lagrangian dual problem. A numerical study is presented to demonstrate the efficiency of the proposed approach. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The generalized exponential distribution, proposed by Gupta and Kundu (1999), is a good alternative to standard lifetime distributions as exponential, Weibull or gamma. Several authors have considered the problem of Bayesian estimation of the parameters of generalized exponential distribution, assuming independent gamma priors and other informative priors. In this paper, we consider a Bayesian analysis of the generalized exponential distribution by assuming the conventional non-informative prior distributions, as Jeffreys and reference prior, to estimate the parameters. These priors are compared with independent gamma priors for both parameters. The comparison is carried out by examining the frequentist coverage probabilities of Bayesian credible intervals. We shown that maximal data information prior implies in an improper posterior distribution for the parameters of a generalized exponential distribution. It is also shown that the choice of a parameter of interest is very important for the reference prior. The different choices lead to different reference priors in this case. Numerical inference is illustrated for the parameters by considering data set of different sizes and using MCMC (Markov Chain Monte Carlo) methods.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.
Resumo:
We show that the wavefunctions 〈pq; λ|n〈, of the harmonic oscillator in the squeezed state representation, have the generalized Hermite polynomials as their natural orthogonal polynomials. These wavefunctions lead to generalized Poisson Distribution Pn(pq;λ), which satisfy an interesting pseudo-diffusion equation: ∂Pnp,q;λ) ∂λ= 1 4 [ ∂2 ∂p2-( 1 λ2) ∂2 ∂q2]P2(p,q;λ), in which the squeeze parameter λ plays the role of time. Th entropies Sn(λ) have minima at the unsqueezed states (λ=1), which means that squeezing or stretching decreases the correlation between momentum p and position q. © 1992.