140 resultados para Gauge elettromagnetismo onde gravitazionali
Resumo:
We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.
Resumo:
We present a prescription for light-cone gauge singularities which embeds in it causality and show that it results in simpler and less demanding integrals to be performed.
Resumo:
Making sure that causality be preserved by means of ''covariantizing'' the gauge-dependent singularity in the propagator of the vector potential A(mu)(x), we show that the evaluation of some basic one-loop light-cone integrals reproduce those results obtained through the Mandelstam-Leibbrandt prescription. Moreover, such a covariantization has the advantage of leading to simpler integrals to be performed in the cone variables (the bonus), although, of course, it introduces an additional alpha-parameter integral to be performed (the price to pay).
Resumo:
We study the regularization ambiguities in an exact renormalized (1 + 1)-dimensional field theory. We show a relation between the regularization ambiguities and the coupling parameters of the theory as well as their role in the implementation of a local gauge symmetry at quantum level.
Resumo:
We examine a recently proposed connection constraining U(1)(em) electromagnetic gauge invariance and the nature of neutrino mass terms in the framework of G(0) = SU(3)(C) x G(W) x U(1)(N) gauge extensions of the standard model where G(W) denotes the weak isospin special unitary extended groups. We show that in a large class of G(0) models there is a unique fermion representation content and scalar fields which select the neutrino mass terms. Noteworthy. even though there are mathematically equivalent representation contents then can be different aspects concerning the physical consequences which are not a mere truism.
Resumo:
The SU(3)cxSU(3)LxU(1)N model of Pisano and Pleitez extends the standard model in a particularly nice way, so that, for example, the anomalies cancel only when the number of generations is divisible by 3. The original version of the model has some problems accounting for the lepton masses. We resolve this problem by modifying the details of the symmetry-breaking sector in the model.
Resumo:
In the usual and current understanding of planar gauge choices for Abelian and non-Abelian gauge fields, the external defining vector n(mu), can either be space-like (n(2) < 0) or time-like (n(2) > 0) but not light-like (n(2) = 0). In this work we propose a light-like planar gauge that consists of defining a modified gauge-fixing term, L-GF, whose main characteristic is a two-degree violation of Lorentz covariance arising from the fact that four-dimensional space-time spanned entirely by null vectors as basis necessitates two light-like vectors, namely n(mu) and its dual m(mu), with n(2) = m(2) = 0, n . m not equal 0, say, e.g. normalized to n . m = 2.
Resumo:
This paper describes a strain gauge-based sensor used for measuring finger force. The theory, design, and sensor construction details are presented. It was constructed using metallic strain gauges and a carefully designed structure which has a protection de-vice that impedes the sensor damage when forces higher than 100 N are applied. Its dimensions are suitable for measuring thumb force, but the same design can be used for constructing smaller sensors for other fingers. It is rugged, presents linear response, good repeatability, resolution of 0.3 N, low hysteresis, and sensitivity of 0.12 V/N. It can be useful in rehabilitation engineering, biomechanics, robotics, and medicine.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
In this note we show that the induced 2D-gravity SL(2, ℝ) currents can be defined in a gauge-independent way although they manifest themselves as generators of residual symmetries only in some special gauges. In the Coulomb gas representation we investigate two approaches, namely one resembling string field theory and another that emphasizes the SL(2, ℝ) structure in the phase space. In the conformal gauge we propose a solution of the Liouville theory in terms of the SL(2, ℝ) currents.
Resumo:
A scheme inspired in Lie algebra extensions is introduced that enlarges gauge models to allow some coupling between space-time and gauge space. Everything may be written in terms of a generalized covariant derivative including usual differential plus purely algebraic terms. A noncovariant vacuum appears, introducing a natural symmetry breaking, but currents satisfy conservation laws alike those found in gauge theories. © 1991 American Institute of Physics.
Resumo:
In this work we discuss the effect of quartic fermion self-interacting terms on the dynamically generated photon masses in 1+1 dimensions, for vector, chiral, and non-Abelian couplings. In the vector and chiral cases we find exactly the dynamically generated mass modified by the quartic term while in the non-Abelian case we find the dynamically generated mass associated with its Abelian part. We show that in the three cases there is a kind of duality between the gauge and quartic couplings. We perform functional as well as operator treatments allowing for the obtention of both fermion and vector field solutions. The structures of the Abelian models in terms of θ vacua are also addressed.