67 resultados para Géis de silicone
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ginecologia, Obstetrícia e Mastologia - FMB
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In different regions of Brazil, population growth and economic development can degrade water quality, compromising watershed health and human supply. Because of its ability to combine spatial and temporal data in the same environment and to create water resources management (WRM) models, the Geographical Information System (GIS) is a powerful tool for managing water resources, preventing floods and estimating water supply. This paper discusses the integration between GIS and hydrological models and presents a case study relating to the upper section of the Paraíba do Sul Basin (Sao Paulo State portion), situated in the Southeast of Brazil. The case study presented in this paper has a database suitable for the basin's dimensions, including digitized topographic maps at a 50,000 scale. From an ArcGIS®/ArcHydro Framework Data Model, a geometric network was created to produce different raster products. This first grid derived from the digital elevation model grid (DEM) is the flow direction map followed by flow accumulation, stream and catchment maps. The next steps in this research are to include the different multipurpose reservoirs situated along the Paraíba do Sul River and to incorporate rainfall time series data in ArcHydro to build a hydrologic data model within a GIS environment in order to produce a comprehensive spatial-temporal model.
Resumo:
Selecting a suitable place to install a new landfill is a hard work. Bauru is a Brazilian municipality where the local landfill currently in use has a life span that is almost over, and the selection of a new area for a future landfill is crucial and urgent. Here we use a geographic information system (GIS) approach to indicate possible suitable areas for installing the landfill. The considered criteria were: river network and the respective buffer zone, relief, urban areas and their respective buffer zone, existence of Areas for Environmental Protection (AEPs), occurrence of wells and their respective buffer zones, existence of airports and their buffer zones, wind direction, and the road network and its respective buffer zone. Due the facts that (1) Bauru has an urban area relatively large in relation to whole municipal area, (2) Bauru has two airports, and (3) this area encompasses parts of three AEPs, the model showed that there are few areas suitable and moderately suitable in Bauru, and the greater part of the municipality is unsuitable to install a new landfill. Due to this important finding reported here, the local policymakers should consider the suitable or even moderately suitable areas for analysis in situ or look for other creative solutions for destination of the solid waste. We highly encourage the use of GIS in studies that seek suitable areas for future landfills, having found that SIG was a tool that allowed fast and precise work and generated an outcome sufficiently clear of interpretation.Implications: Solid waste (SW) management is one of the main environmental concerns nowadays. Landfilling SW is still the main practice to disposal of such material. However, for many regions, suitable places for landfilling are getting scarce. This study proved this situation for a populous place in a southeastern Brazilian region. This study also showed how the decision makers should manage the problem in order to minimize the amount of SW generated and delivered for the landfill. Massive investment in education is a critical issue to reach the proposed aim.
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work aims to study the structural characteristics of silica gels obtained from the acid hydrolysis of tetraethoxysilane (TEOS) in water solutions with different concentrations of sodium dodecyl sulfate (SDS). The structural characteristics were studied in stages ranging from the wet gel to the dry stages of the gels (aerogels and xerogels). Aerogels were obtained by ambient pressure drying (APD) after silylation process using trimethylchlorosilane (TMCS) as silylating agent. Xerogels were obtained by conventional evaporating the liquid phase from non silylated gels. The samples were characterized by nitrogen adsorption and small angle X-ray scattering (SAXS). The structure of the wet gels and of the aerogels prepared with the surfactant exhibited characteristics of mass-fractal structures with fractal dimension D in the range 2.1-2.2 for the wet gels and 2.3-2.4 for the aerogels. The characteristic size of the fractal domain reduces while the size a0 of the primary silica particle composing the fractal structure increases with the drying of the gels, in a process in which share of the porosity is eliminated. Aerogels exhibited typical values for the specific surface of 900 m2g-1 and of 3.5 cm3.g-1 for the total pore volume. These values are correspondingly comparable to those of the aerogels prepared by supercritical drying, since the silylation process replaces hydrophilic –OH groups by hydrophobic –Si-R3 ones, inhibiting the porosity elimination on drying. The silica particle size also increases lightly with the silylation because the attachment of the –Si-R3 groups on the silica surface. The pore size distribution curves of the aerogels are similar for all samples exhibiting a maximum in around 40 nm, independent the concentration of surfactant. This suggests that the characteristic size of 40 nm is due to the association of surfactant micelles... (Complete abstract click electronic access below)