150 resultados para Fuzzy Logics
Resumo:
Informatics evolution presently offers the possibility of new technique and methodology development for studies in all human knowledge areas. In addition, the present personal computer capacity of handling a large volume of data makes the creation and application of new analysis tools easy. This paper aimed the application of a fuzzy partition matrix to analyze data obtained from the Landsat 5 TMN sensor, in order to elaborate the supervised classification of land use in Arroio das Pombas microbasin in Botucatu, SP, Brazil. It was possible that one single training area present input in more than one covering class due to weight attribution at the signature creation moment. A change in the classification result was also observed when compared to maximum likelihood classification, mainly when related to bigger uniformity and better class edges classification.
Resumo:
This paper presents a new methodology for the adjustment of fuzzy inference systems, which uses technique based on error back-propagation method. The free parameters of the fuzzy inference system, such as its intrinsic parameters of the membership function and the weights of the inference rules, are automatically adjusted. This methodology is interesting, not only for the results presented and obtained through computer simulations, but also for its generality concerning to the kind of fuzzy inference system used. Therefore, this methodology is expandable either to the Mandani architecture or also to that suggested by Takagi-Sugeno. The validation of the presented methodology is accomplished through estimation of time series and by a mathematical modeling problem. More specifically, the Mackey-Glass chaotic time series is used for the validation of the proposed methodology. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.
Resumo:
The purpose of this paper is to introduce a new approach for edge detection in grey shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the grey shades making up the image and, thus, calculate the appropriateness of the pixels in relation to a homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. Copyright © 2009, Inderscience Publishers.
Resumo:
One of the critical problems in implementing an intelligent grinding process is the automatic detection of workpiece surface burn. This work uses fuzzy logic as a tool to classify and predict burn levels in the grinding process. Based on acoustic emission signals, cutting power, and the mean-value deviance (MVD), linguistic rules were established for the various burn situations (slight, intermediate, severe) by applying fuzzy logic using the Matlab Toolbox. Three practical fuzzy system models were developed. The first model with two inputs resulted only in a simple analysis process. The second and third models have an additional MVD statistic input, associating information and precision. These two models differ from each other in terms of the rule base developed. The three developed models presented valid responses, proving effective, accurate, reliable and easy to use for the determination of ground workpiece burn. In this analysis, fuzzy logic translates the operator's human experience associated with powerful computational methods.
Resumo:
This paper presents the construction of a fuzzy environmental quality index for decision support in municipal environmental management. Five groups of indicators were selected in order to obtain an equation that best represented reality in terms of environmental quality. The calculation was carried out using fuzzy mathematical concepts, with the aid of the package Fuzzy Logical Toolbox 2.1 for Matlab ® 6.1, which provides functions and some applications of the theory of fuzzy sets. The work seeks to create a method of inference concerning the nature of urban areas that are unsustainable with respect to the environment, an issue that is often relegated to the background during public policy discussions. The development of this index, together with its implementation and dissemination, could improve public awareness of environmental issues, and promote mobilization towards the use of best practices in local development. © 2010 IEEE.
Resumo:
Due to growing urbanization and industrialization, the environment is suffering from pollution of rivers, degradation of soils and deteriorated air quality. Quality indices appear to be useful to evaluate the conditions of these media. The aim of this study was the development of a water quality index using a fuzzy inference system, since such an approach has proved advantageous in addressing problems that are subjective by nature or for which the data are uncertain. The methodology employed was based on this inference system, and considered the nine water quality parameters employed by CETESB (Companhia de Tecnologia de Saneamento Ambiental, São Paulo, Brazil) to evaluate water quality. After assessment of the data using the index, a comparison was made with the WQI (Water Quality Index), which is used for the monitoring of various water bodies, including in the study region. The results obtained using the index developed on the basis of fuzzy inference were found to be more useful than those derived from the method currently used by CETESB, since losses and/or omissions concerning individual parameters were minimized. © 2010 IEEE.
Resumo:
We review our construction of a bifundamental version of the fuzzy 2-sphere and its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane model. This is shown to be completely equivalent to the usual (adjoint) fuzzy sphere. We discuss the mathematical details of the bifundamental fuzzy sphere and its field theory expansion in a model-independent way. We also examine how this new formulation affects the twisting of the fields, when comparing the field theory on the fuzzy sphere background with the compactification of the 'deconstructed' (higher dimensional) field theory.
Resumo:
In some practical problems, for instance, in the suppression of vibration in mechanical systems, the state-derivative signals are easier to obtain than the state signals. Thus, a method for state-derivative feedback design applied to uncertain nonlinear systems is proposed in this work. The nonlinear systems are represented by Takagi-Sugeno fuzzy models during the modeling of the problem, allowing to use Linear Matrix Inequalities (LMIs) in the controller design. This type of modeling ease the control design, because, LMIs are easily solved using convex programming technicals. The control design aimed at system stabilisation, with or without bounds on decay rate. The efficiency of design procedure is illustrated through a numerical example.
Resumo:
Feedback control systems have been used to move the muscles and joints of the limbs of paraplegic patients. The feedback signal, related to the knee joint angle, can be obtained by using an electrogoniometer. However, the use of accelerometers can help the measurements due the facility of adhering these devices to the skin. Accelerometers are also very suitable for these applications due their small dimensions and weight. In this paper a new method for designing a control system that can vary the knee joint angle using Functional Electrical Stimulation (FES) is presented, as well as a simulation with parameters values available in the literature. The nonlinear control system was represented by a Takagi-Sugeno fuzzy model and the feedback signals were obtained by using accelerometers. The design method considered all plant nonlinearities and was efficient and reliable to control the leg position of a paraplegic patient with the angle of the knee ranging from 0° to 30°, considering electric stimulation at the quadriceps muscle. The proposed method is viable and offers a new alternative for designing control systems of the knee joint angle using more comfortable sensors for the patients.
Resumo:
The prediction of the traffic behavior could help to make decision about the routing process, as well as enables gains on effectiveness and productivity on the physical distribution. This need motivated the search for technological improvements in the Routing performance in metropolitan areas. The purpose of this paper is to present computational evidences that Artificial Neural Network ANN could be use to predict the traffic behavior in a metropolitan area such So Paulo (around 16 million inhabitants). The proposed methodology involves the application of Rough-Fuzzy Sets to define inference morphology for insertion of the behavior of Dynamic Routing into a structured rule basis, without human expert aid. The dynamics of the traffic parameters are described through membership functions. Rough Sets Theory identifies the attributes that are important, and suggest Fuzzy relations to be inserted on a Rough Neuro Fuzzy Network (RNFN) type Multilayer Perceptron (MLP) and type Radial Basis Function (RBF), in order to get an optimal surface response. To measure the performance of the proposed RNFN, the responses of the unreduced rule basis are compared with the reduced rule one. The results show that by making use of the Feature Reduction through RNFN, it is possible to reduce the need for human expert in the construction of the Fuzzy inference mechanism in such flow process like traffic breakdown. © 2011 IEEE.
Resumo:
In this paper, the fuzzy Lyapunov function approach is considered for stabilizing continuous-time Takagi-Sugeno fuzzy systems. Previous linear matrix inequality (LMI) stability conditions are relaxed by exploring further the properties of the time derivatives of premise membership functions and by introducing a slack LMI variable into the problem formulation. The stability results are thus used in the state feedback design which is also solved in terms of LMIs. Numerical examples illustrate the efficiency of the new stabilizing conditions presented. © 2011 IFAC.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
This work develops two approaches based on the fuzzy set theory to solve a class of fuzzy mathematical optimization problems with uncertainties in the objective function and in the set of constraints. The first approach is an adaptation of an iterative method that obtains cut levels and later maximizes the membership function of fuzzy decision making using the bound search method. The second one is a metaheuristic approach that adapts a standard genetic algorithm to use fuzzy numbers. Both approaches use a decision criterion called satisfaction level that reaches the best solution in the uncertain environment. Selected examples from the literature are presented to compare and to validate the efficiency of the methods addressed, emphasizing the fuzzy optimization problem in some import-export companies in the south of Spain. © 2012 Brazilian Operations Research Society.
Resumo:
Recently, considerable research work have been conducted towards finding fast and accurate pattern classifiers for training Intrusion Detection Systems (IDSs). This paper proposes using the so called Fuzzy ARTMAT classifier to detect intrusions in computer network. Our investigation shows, through simulations, how efficient such a classifier can be when used as the learning mechanism of a typical IDS. The promising evaluation results in terms of both detection accuracy and training duration indicate that the Fuzzy ARTMAP is indeed viable for this sort of application.