190 resultados para Fusarium solani
Resumo:
The Cattleya genus has a great importance in the flower agro-business market. Fusarium wilts, caused by Fusarium oxysporum f. sp. cattleyae, is considered one of the main factors of decline and death of plants of this genus. Using seven hybrids (intra and intergenerics) of Cattleya, tests of resistance and susceptibility to F. oxysporum were performed in conditions of greenhouse for 12 months, using, as evaluation criterion, a scale of the disease severity ranging from one (resistant) to eight (highly susceptible). High susceptibility to the fungus by Cattleya Nobile's Wax Toy, Cattleya Orquidacea's Mister Fast intrageneric hybrids and Potinara Orquidacea's Havana Brown intergeneric hybrid, related to Brassocattleya Orquidacea's Melody intergeneric hybrid, high resistance to the pathogens was observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho avaliou a eficiência dos isolados (141/3, 233, 233/1, 245, 245/1, 251, 251/2, 251/5 e 257) de Fusarium oxysporum não patogênico ao tomateiro (Lycopersicon esculentum), no controle da murcha vascular causada por Fusarium oxysporum f. sp. lycopersici, raça 2 em plântulas de tomateiro cv. Viradoro. Para verificar o efeito dos isolados de F. oxysporum não patogênicos, o sistema radicular de plântulas de tomateiro, com 30 dias de idade, foi imerso na suspensão de conídios (10(6) ml-1) e as mudas transplantadas para substrato de cultivo. Após 35 dias do transplante foi verificado que esses isolados não foram patogênicos às plantas de tomateiro, nem afetaram o desenvolvimento das mudas. A eficiência dos isolados de Fusarium oxysporum não patogênicos no controle da murcha foi determinada imergindo-se as raízes de mudas de tomateiro em suspensão de conídios (10(6) conídios ml-1) e transplantando-as em substratos previamente infestados com os isolados de F. oxysporum f.sp. lycopersici, raça 2 (10(5) conídios ml-1 de substrato). Transcorridos 35 dias do transplante, foram realizadas as avaliações da severidade na escala de 1=planta sadia a 6=planta morta ou com vasos coloridos e folhas murchas até o ponteiro e altura das mudas. Os isolados de F. oxysporum não patogênicos foram eficientes em reduzir a severidade da doença e em manter normal o seu desenvolvimento. Esses resultados evidenciam a atividade antagônica dos isolados de F. oxysporum não patogênico no controle da murcha vascular do tomateiro, causada por Fusarium oxysporum f. sp. lycopersici raça 2.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Rhizoctonia solani AG-1 IA causes leaf blight on soybean and rice. Despite the fact that R. solani AG-1 IA is a major pathogen affecting soybean and rice in Brazil and elsewhere in the world, little information is available on its genetic diversity and evolution. This study was an attempt to reveal the origin, and the patterns of movement and amplification of epidemiologically significant genotypes of R. solani AG-1 IA from soybean and rice in Brazil. For inferring intraspecific evolution of R. solani AG-1 IA sampled from soybean and rice, networks of ITS-5.8S rDNA sequencing haplotypes were built using the statistical parsimony algorithm from Clement et al. (2000) Molecular Ecology 9: 1657-1660. Higher haplotype diversity (Nei M 1987, Molecular Evolutionary Genetics Columbia University Press, New york: 512p.) was observed for the Brazilian soybean sample of R. solani AG-1 IA (0.827) in comparison with the rest of the world sample (0.431). Within the south-central American clade (3-2), four haplotypes of R. solani AG-1 IA from Mato Grosso, one from Tocantins, one from Maranhao, and one from Cuba occupied the tips of the network, indicating recent origin. The putative ancestral haplotypes had probably originated either from Mato Grosso or Maranhao States. While 16 distinct haplotypes were found in a sample of 32 soybean isolates of the pathogen, the entire rice sample (n=20) was represented by a single haplotype (haplotype 5), with a worldwide distribution. The results from nested-cladistic analysis indicated restricted gene flow with isolation by distance (or restricted dispersal by distance in nonsexual species) for the south-central American clade (3-2), mainly composed by soybean haplotypes.
Resumo:
Rhizoctonia foliar blight (RFB) of soybean [Glycine max (L.) Merrill] occurs in many tropical and subtropical regions, causing yield reductions of up to 70% and in Brazil, up to 60%. The disease is caused by Rhizoetonia solani AG1-IA and AG1-IB, and by AG2-3 in Japan. RFB occurs in the North, Northeast and Mid-west regions of Brazil. Chemical control remains the only effective method of controlling RFB, but its efficiency depends upon environmental conditions. In this study, 18 fungicides, salicylic acid (SA) and acibenzolar-s-methyl (ASM) were evaluated on R. solani AG1-IA in vitro, by mycelial growth rating and estimating effective concentration for 50% (EC 50) and 90% (EC 90) inhibition of mycelial growth, and in vivo by reduction of disease severity on soybean plants in greenhouse conditions. Mycelial growth was strongly inhibited by the fungicides pyraclostrobin + boscalid and fludioxonil. Preventive fungicide applications were the most effective. Strobilurins were more efficient both in preventive and curative applications. Best results with plant resistance activators were obtained with SA (2.5 mM) sprayed at 20 d before inoculation and with ASM (12.5 mg a.i. l(-1)) 10 d before inoculation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.
Resumo:
Background: the soil fungus Rhizoctonia solani anastomosis group 3 (AG-3) is an important pathogen of cultivated plants in the family Solanaceae. Isolates of R. solani AG-3 are taxonomically related based on the composition of cellular fatty acids, phylogenetic analysis of nuclear ribosomal DNA (rDNA) and beta-tubulin gene sequences, and somatic hyphal interactions. Despite the close genetic relationship among isolates of R. solani AG-3, field populations from potato and tobacco exhibit comparative differences in their disease biology, dispersal ecology, host specialization, genetic diversity and population structure. However, little information is available on how field populations of R. solani AG-3 on potato and tobacco are shaped by population genetic processes. In this study, two field populations of R. solani AG-3 from potato in North Carolina (NC) and the Northern USA; and two field populations from tobacco in NC and Southern Brazil were examined using sequence analysis of two cloned regions of nuclear DNA (pP42F and pP89).Results: Populations of R. solani AG-3 from potato were genetically diverse with a high frequency of heterozygosity, while limited or no genetic diversity was observed within the highly homozygous tobacco populations from NC and Brazil. Except for one isolate (TBR24), all NC and Brazilian isolates from tobacco shared the same alleles. No alleles were shared between potato and tobacco populations of R. solani AG-3, indicating no gene flow between them. To infer historical events that influenced current geographical patterns observed for populations of R. solani AG-3 from potato, we performed an analysis of molecular variance (AMOVA) and a nested clade analysis (NCA). Population differentiation was detected for locus pP89 (Phi(ST) = 0.257, significant at P < 0.05) but not for locus pP42F (Phi(ST) = 0.034, not significant). Results based on NCA of the pP89 locus suggest that historical restricted gene flow is a plausible explanation for the geographical association of clades. Coalescent-based simulations of genealogical relationships between populations of R. solani AG-3 from potato and tobacco were used to estimate the amount and directionality of historical migration patterns in time, and the ages of mutations of populations. Low rates of historical movement of genes were observed between the potato and tobacco populations of R. solani AG-3.Conclusion: the two sisters populations of the basidiomycete fungus R. solani AG-3 from potato and tobacco represent two genetically distinct and historically divergent lineages that have probably evolved within the range of their particular related Solanaceae hosts as sympatric species.
Resumo:
In vitro inhibition of the of spores germination of Alternaria solani by iprodione, chlorothalonil, and anilazine at different dosages was studied. The highest concentration of active ingredient studied for each fungicide was equivalent to that recommended for the control of the early blight, under field conditions: 0.75; 1.80 and 1.44 g, respectively, of iprodione, chlorothalonil and anilazine per litre of water. A series of two-fold diluitions of each original concentration was studied in additional nine experiments. Eah of the three fungicides showed total in vitro spore inhibition at the highest rate, at six hours of incubation. At nine hours, only analazine mantained its full inhibition activity. The inhibition activity of iprodione decreased suddenly after 1/2 dilution, so that at the 1/8 dilution a total loss of inhibitory activity was observed. Chlorothalonil showed a progressive and slighter decrease of its activity as the dilution rate increased.Analizine showed a high inhibitory activity at higher dilutions, without any loss up to 1/128 dilution. Even at 1/512 dilution, its activity was so high that only 20% of spore germination was observed at six or nine hours of incubation.
Resumo:
The biofertilizer was produced through anaerobic fermentation of cow manure adding milk, sugar, salts, cow liver parts and bone powder. After 73 days of fermentation it was evaluated the effect on micelial growth of Pythium aphanidermatum, Alternaria solani, Stemphylium solani, Septoria licopersici, Sclerotinia sclerotiorum, Botrytis cinerea, Rhizoctonia solani, Fusarium oxysporum f. sp. phaseoli and spores germination of B. cinerea, A. solani, Hemileia vastatrix and Coleosporium plumierae. In relation to micelial growth inhibition, the growth rate was calculated and it was found that, in general, concentrations over 10% caused a total inhibition of growth for the majority of fungi assayed. In case of spores germination, biofertilizer concentration over 20% has inhibited completely the germination of B. cinerea, over 10% inhibited A. solani, 5 and 1% of C. plumierae and H. vastatrix, respectively. Three different biofertilizers were also tested and one of them was less effective, which was the one produced with manure from confined cows opposed to the others produced with grazing cows.
Resumo:
The behavior of dry bean (Phaseolus vulgaris L.) genotypes PI 150414, PI 163117, PI 175829 white, PI 175829 purple, PI 175858, PI 197687, A 417, A 420, A 429, Xan 160, Xan 161, WISHBR 40, and IAC Carioca inoculated with Fusarium oxysporum f. sp. phaseoli, Macrophomina phaseolina, and Xanthomonas campestris pv. phaseoli was evaluated under greenhouse condition. The bean genotypes Xan 160, PI 150414, A 417, PI 175829 purple, Xan 161, A 420, PI 163117, and PI 175829 white were resistant to F. oxysporum f. sp. phaseoli, and only PI 155829 white had a good level of resistance to M. phaseolina. All bean genotypes were susceptible to Feij-4 strain, and only Xan 161 had some level of leaf resistance to Feij-41 strain of X. campestris pv. phaseoli.