217 resultados para Functional differential equations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A direct version of the boundary element method (BEM) is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs). Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state ( membrane) and for the out-of-plane state ( bending). These uncoupled systems are joined to formamacro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs). A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents simulations of the Electrofluid Dynamic energy conversion process in slender channel devices having very small particles (in both micro and nano scales) as charge carriers. Solutions are discussed for a system composed by coupled differential equations, which includes the equation for the total current along the channel, the equations for total energy and momentum of the mixture (gas and solid particles), the continuity equation and the equations for energy and momentum of a single particle. Results for suspended particles of higher diameters have been previously published in the Literature, but the simulations here presented exhibit an appreciable increase in the values for output currents.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this Letter we investigate Lie symmetries of a (2 + 1)-dimensional integrable generalization of the Camassa-Holm (CH) equation. Through the similarity reductions we obtain four different (1 + 1)-dimensional systems of partial differential equations in which one of them turns out to be a (1 + 1)-dimensional CH equation. We establish their integrability by providing the Lax pair for all of them. Further, we present a brief analysis for some types of particular solutions which include the cuspon, peakon and soliton solutions for the two-dimensional generalization of the CH equation. (C) 2000 Published by Elsevier B.V. B.V.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many years ago Zel'dovich showed how the Lagrange condition in the theory of differential equations can be utilized in the perturbation theory of quantum mechanics. Zel'dovich's method enables us to circumvent the summation over intermediate states. As compared with other similar methods, in particular the logarithmic perturbation expansion method, we emphasize that this relatively unknown method of Zel'dovich has a remarkable advantage in dealing with excited stares. That is, the ground and excited states can all be treated in the same way. The nodes of the unperturbed wavefunction do not give rise to any complication.