170 resultados para Finite Domination
Resumo:
We construct the finite temperature field theory of the two-dimensional ghost-antighost system within the framework of thermo field theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We continue our discussion of the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed non-linear integral equation. A non-linear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A thermodynamical analysis for the type IIB superstring in a pp-wave background is considered. The thermal Fock space is built and the temperature SUSY breaking appears naturally by analyzing the thermal vacuum. All the thermodynamical quantities are derived by evaluating matrix elements of operators in the thermal Fock space. This approach seems to be suitable to study thermal effects in the BMN correspondence context. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
Recently there have been suggestions that for a proper description of hadronic matter and hadronic correlation functions within the NJL model at finite density/temperature the parameters of the model should be taken density/temperature dependent. Here we show that qualitatively similar results can be obtained using a cutoff-independent regularization of the NJL model. In this regularization scheme one can express the divergent parts at finite density/temperature of the amplitudes in terms of their counterparts in vacuum.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
The Cahill-Glauber approach for quantum mechanics on phase space is extended to the finite-dimensional case through the use of discrete coherent states. All properties and features of the continuous formalism are appropriately generalized. The continuum results are promptly recovered as a limiting case. The Jacobi theta functions are shown to have a prominent role in the context.
Resumo:
In this paper, a real-time formulation of light-cone pp-wave string field theory at finite temperature is presented. This is achieved by developing the thermo field dynamics (TFD) formalism in a second quantized string scenario. The equilibrium thermodynamic quantities for a pp-wave ideal string gas are derived directly from expectation values on the second quantized string thermal vacuum. Also, we derive the real-time thermal pp-wave closed string propagator. In the flat space limit it is shown that this propagator can be written in terms of Theta functions, exactly as the zero temperature one. At the end, we show how superstrings interactions can be introduced, making this approach suitable to study the BMN dictionary at finite temperature.