175 resultados para Finite Automata
Resumo:
Using variational and numerical solutions we show that stationary negative-energy localized (normalizable) bound states can appear in the three-dimensional nonlinear Schrodinger equation with a finite square-well potential for a range of nonlinearity parameters. Below a critical attractive nonlinearity, the system becomes unstable and experiences collapse. Above a limiting repulsive nonlinearity, the system becomes highly repulsive and cannot be bound. The system also allows nonnormalizable states of infinite norm at positive energies in the continuum. The normalizable negative-energy bound states could be created in BECs and studied in the laboratory with present knowhow.
Resumo:
We establish the bridge between the commonly used Nabetani-Ogaito-Sato-Kishimoto (NOSK) formula for the asymmetry parameter a(Lambda) in the Lambda p -> np emission of polarized hypernuclei, and the shell-model (SM) formalism for finite hypernuclei. We demonstrate that the s-wave approximation leads to a SM formula for a(Lambda) that is as simple as the NOSK one and that reproduces the exact results for (5)(Lambda)He and (12)(Lambda)C better than initially expected. The simplicity achieved here is indeed remarkable. The new formalism makes the theoretical evaluation of a(Lambda) more transparent and explains clearly why the one-meson exchange model is unable to account for the experimental data of (5)(Lambda)He.
Resumo:
We construct the finite temperature field theory of the two-dimensional ghost-antighost system within the framework of thermo field theory. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
We continue our discussion of the q-state Potts models for q less than or equal to 4, in the scaling regimes close to their critical and tricritical points. In a previous paper, the spectrum and full S-matrix of the models on an infinite line were elucidated; here, we consider finite-size behaviour. TBA equations are proposed for all cases related to phi(21) and phi(12) perturbations of unitary minimal models. These are subjected to a variety of checks in the ultraviolet and infrared limits, and compared with results from a recently-proposed non-linear integral equation. A non-linear integral equation is also used to study the flows from tricritical to critical models, over the full range of q. Our results should also be of relevance to the study of the off-critical dilute A models in regimes 1 and 2. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
In this work we study the electromagnetic field at finite temperature via the massless DKP formalism. The constraint analysis is performed and the partition function for the theory is constructed and computed. When it is specialized to the spin 1 sector we obtain the well-known result for the thermodynamic equilibrium of the electromagnetic field. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A thermodynamical analysis for the type IIB superstring in a pp-wave background is considered. The thermal Fock space is built and the temperature SUSY breaking appears naturally by analyzing the thermal vacuum. All the thermodynamical quantities are derived by evaluating matrix elements of operators in the thermal Fock space. This approach seems to be suitable to study thermal effects in the BMN correspondence context. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We suggest a pseudospectral method for solving the three-dimensional time-dependent Gross-Pitaevskii (GP) equation, and use it to study the resonance dynamics of a trapped Bose-Einstein condensate induced by a periodic variation in the atomic scattering length. When the frequency of oscillation of the scattering length is an even multiple of one of the trapping frequencies along the x, y or z direction, the corresponding size of the condensate executes resonant oscillation. Using the concept of the differentiation matrix, the partial-differential GP equation is reduced to a set of coupled ordinary differential equations, which is solved by a fourth-order adaptive step-size control Runge-Kutta method. The pseudospectral method is contrasted with the finite-difference method for the same problem, where the time evolution is performed by the Crank-Nicholson algorithm. The latter method is illustrated to be more suitable for a three-dimensional standing-wave optical-lattice trapping potential.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
Recently there have been suggestions that for a proper description of hadronic matter and hadronic correlation functions within the NJL model at finite density/temperature the parameters of the model should be taken density/temperature dependent. Here we show that qualitatively similar results can be obtained using a cutoff-independent regularization of the NJL model. In this regularization scheme one can express the divergent parts at finite density/temperature of the amplitudes in terms of their counterparts in vacuum.
Resumo:
By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.
Resumo:
A semi-classical approach is used to obtain Lorentz covariant expressions for the form factors between the kink states of a quantum field theory with degenerate vacua. Implemented on a cylinder geometry it provides an estimate of the spectral representation of correlation functions in a finite volume. Illustrative examples of the applicability of the method are provided by the sine-Gordon and the broken phi(4) theories in 1 + 1 dimensions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to study finite temperature effects in effective quantum electrodynamics using Weisskopf's zero-point energy method in the context of thermo, field dynamics. After a general calculation for a weak magnetic field at fixed T, the asymptotic behavior of the Euler-Kockel-Heisenberg Lagrangian density is investigated focusing on the regularization requirements in the high temperature limit. In scalar QED the same problem is also discussed.
Resumo:
We discuss the phi(6) theory defined in D=2+1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of the composite operator (Cornwall, Jackiw, and Tomboulis) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.
Resumo:
We show how discrete squeezed states in an N-2-dimensional phase space can be properly constructed out of the finite-dimensional context. Such discrete extensions are then applied to the framework of quantum tomography and quantum information theory with the aim of establishing an initial study on the interference effects between discrete variables in a finite phase space. Moreover, the interpretation of the squeezing effects is seen to be direct in the present approach, and has some potential applications in different branches of physics.
Resumo:
We discuss the phi(6) theory defined in D = 2 + 1-dimensional space-time and assume that the system is in equilibrium with a thermal bath at temperature beta(-1). We use the 1/N expansion and the method of composite operator (CJT) for summing a large set of Feynman graphs. We demonstrate explicitly the Coleman-Mermin-Wagner theorem at finite temperature.