82 resultados para Enzymatic hydrolysates
Resumo:
Biochemical computing is an emerging field of unconventional computing that attempts to process information with biomolecules and biological objects using digital logic. In this work we survey filtering in general, in biochemical computing, and summarize the experimental realization of an and logic gate with sigmoid response in one of the inputs. The logic gate is realized with electrode-immobilized glucose-6-phosphate dehydrogenase enzyme that catalyzes a reaction corresponding to the Boolean and functions. A kinetic model is also developed and used to evaluate the extent to which the performance of the experimentally realized logic gate is close to optimal.
Resumo:
The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This research presents a comparative study of enzymatic activity of the hypopharyngeal gland extracts from workers of Apis mellifera in three physiologic stages: newly emerged, nurse and forager workers, with the objective of contributing to the comprehension of the gland function. In order to determinate the enzymes present in the extracts, the Api Zym kit (Bio Mérieux) was used to test the activity of 19 different enzymes. The enzymes found in larger amounts only in the hypopharyngeal glands from certain individuals were the following: in newly emerged workers, the N-acetyl-down double arrow sign-glucosaminidase that may be digesting the chitin of some food ingested by the bee; in forager workers, the acid phosphatase that is likely acting in authophagic processes, the a-glucosidase, in the processing of nectar into honey, and the down double arrow sign-glucosidases, in the pollen digestion.
Resumo:
The objective of this research was to contribute to elucidation of the function of the hypopharyngeal glands of S. postica in enzyme production, using the Api Zym kit (Bio Mérieux). Dealing with a comparative analysis between the enzymatic content of the hypopharyngeal gland extracts from newly emerged, nurse and forager workers, as well as, newly emerged males and males mature for mating of S. postica. The hypopharyngeal glands from nurse workers of Apis mellifera, that produce part of the royal jelly, were used for comparison. While in A. mellifera, the hypopharyngeal glands are present only in workers, in S. postica, the hypopharyngeal glands are present and functioning in all adult individuals of the colony. The higher enzymatic activity was observed in the hypopharyngeal gland extracts from nurse workers and may be related to a larger demand for energy, compared to other individuals. The occurrence of large quantities of leucine arylamidase in all individuals may mean that protein processing is happening.
Resumo:
The aim of the present parallel, double-blind investigation was to evaluate the effect of using systemic metronidazole alone or associated to scaling and root planing on adult chronic periodontal disease, monitored at baseline, 30, 60 and 90 days. Twelve subjects were divided into three groups: the first group (Group I - 22 sites) was submitted to scaling and root planing (SRP) alone; the second group (Group II - 30 sites) received SRP and 250 mg of metronidazole (3 times a day for 10 days), and the third group (Group III - 31 sites) was treated with metronidazole alone. The clinical parameters evaluated were probing depth (PD), clinical attachment level (CAL), plaque index (PlI), gingival index (GI) and bleeding upon probing (BP). Microbiological (BANA test) and enzymatic (Pocket Watch) tests were also performed. All three proposed treatments produced significant improvements in clinical conditions of subjects, from baseline, 30, 60 and 90-day period, except for clinical attachment level. The results obtained by microbiological and enzymatic tests did not show statistical differences among the groups for the 90-day period (r = 0.7924 and r = 0.7757, respectively). In relation to clinical parameters, statistical differences among groups were observed only for the gingival index (p = 0.0261) between Groups I and II, and probing depth (p = 0.0124) between Group I and the others. We conclude that the use of systemic metronidazole did not produce additional effects on the microbiological conditions of these patients with chronic periodontal disease.
Resumo:
Using the post-mitochondrial fraction of rat intestinal mucosa, we have investigated lycopene metabolism. The incubation media was composed of NAD+, KCI, and DTT with or without added lipoxygenase. The addition of lipoxygenase into the incubation significantly increased the production of lycopene metabolites. The enzymatic incubation products of 2H10 lycopene were separated using high-performance liquid chromatography and analyzed by UV/Vis spectrophotometer and atmospheric pressure chemical ionization-mass spectroscopy. We have identified two types of products: cleavage products and oxidation products. The cleavage products are likely: (1) 3-keto-apo-13-lycopenone (C18H24O2 or 6,10,14-trimethyl-12-one-3,5,7,9,13-pentadecapentaen-2-one) with lambdamax = 365 nm and m/z =272 and (2) 3,4-dehydro-5,6-dihydro-15-apo-lycopenal (C20H28O or 3,7,11,15-tetramethyl-2,4,6,8,12,14-hexadecahexaen-l-al) with lambdamax= 380 nm and m/z = 284. The oxidative metabolites are likely: (3) 2-ene-5,8-lycopenal-furanoxide (C37H50O) with lambdamax = 415 nm, 435 nm, and 470 nm, and m/z = 510; (4) lycopene-5, 6, 5', 6'-diepoxide (C40H56O2) with lambdamax = 415 nm, 440 nm, and 470 nm, and m/z =568; (5) lycopene-5,8-furanoxide isomer (I) (C40H56O2) with lambdamax = 410 nm, 440 nm, and 470 nm, and m/z = 552; (6) lycopene-5,8-epoxide isomer (II) (C40H56O) with lambdamax = 410, 440, 470 nm, and m/z = 552; and (7) 3-keto-lycopene-5',8'-furanoxide (C40H54O2) with lambdamax = 400 nm, 420 nm, and 450 nm, and m/z = 566. These results demonstrate that both central and excentric cleavage of lycopene occurs in the rat intestinal mucosa in the presence of soy lipoxygenase.
Resumo:
The Hymenoptera Aculeata venoms, with few exceptions, have been poorly studied and characterized. Nevertheless, they have raised increasing interest due to their medical importance, since accidents with these insects are fairly frequent in Brazil and may cause severe allergic reactions. The objectives of the present work were the quantitative characterization of the main allergenic enzymes present in the venom of the species Polybia paulista, Polybia ignobilis, Polistes simillimus, and Agelaia pallipes pallipes through biochemical assays for the determination of total protein content, as well as the level of the enzymatic activity of phospholipase, hyaluronidase, acid phosphatase and esterase. These results, in addition to providing biochemical knowledge about the venom of the species in question, also supply studies that allow phylogenetic inferences among them.
Enzymatic variability among venoms from different subspecies of Apis mellifera (Hymenoptera: Apidae)
Resumo:
The enzymatic variability was analyzed in venom extracts from bees reared in different colonies of the Africanized, A. m. ligustica and A. m. carnica subspecies. The implications of this variation focused on the biochemistry differentiation and immunogenicity of these venoms. The results showed the existence of a huge variability among the subspecies as well as among the colonies for three out of the six tested components - hyaluronidase, acid phosphatase and proteases - suggesting the utilization of these features as possible biochemical markers. Furthermore, although not statistically significant, it was found that the Africanized bee venom presented slightly higher levels of protein content and esterase activity, when compared to the other subspecies. If the esterase plays a role in the pain intensity caused by the sting, as suggested elsewhere, this might suggest a reason for a bigger algogenicity of this venom in relation to that of European bees. On the other hand, A. m. ligustica bees presented the highest levels of proteolytic and acid phosphatase activities, whose functions are not enlightened in Hymenoptera venoms. The A. m. carnica workers presented the highest hyaluronidase and the lowest acid phosphatase activity levels. The extremely variable results among colonies of the same subspecies and among subspecies, for the tested venom components, justify the absence of correlation between allergic reactions and tests with pooled venom.
Resumo:
The [Mn4 IVO5(terpy)4(H 2O)2]6+ complex, show great potential for electrode modification by electropolymerization using cyclic voltammetry. The electropolymerization mechanism was based on the electronic transfer between dx2-y2 orbitals of the center metallic and pπ orbital of the ligand, which show great complexity of the system due to orbitals overlap present in octahedral complex of the metal-μ-oxo. The voltammetric behavior both in and after electropolymerization process were also discussed, where the best condition of electropolymerization was observed for low scan rate and 50 potential cycles. A study in ITO/glass electrode for better characterization of polymer was also performed. ©The Electrochemical Society.
Resumo:
Sugarcane bagasse was pretreated with ozone to increase lignocellulosic material digestibility. Bagasse was ozonated in a fixed bed reactor at room temperature, and the effect of the two major parameters, ozone concentration and sample moisture, was studied. Acid insoluble and total lignin decreased whereas acid soluble lignin increased in all experiments. Pretreatment barely attacked carbohydrates, with cellulose and xylan recovery rates being >92%. Ozonolysis increased fermentable carbohydrate release considerably during enzymatic hydrolysis. Glucose and xylose yields increased from 6.64% and 2.05%, for raw bagasse, to 41.79% and 52.44% under the best experimental conditions. Only xylitol, lactic, formic and acetic acid degradation compounds were found, with neither furfural nor HMF (5-hydroxymethylfurfural) being detected. Washing detoxification provided inhibitor removal percentages above 85%, increasing glucose hydrolysis, but decreasing xylose yield by xylan solubilization. SEM analysis showed structural changes after ozonization and washing. © 2013 Elsevier Ltd.
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
Resumo:
Polyvinyl alcohol (PVA) microspheres with different degree of crystallinity were used as solid supports for Rhizomucor miehei lipase immobilization, and the enzyme-PVA complexes were used as biocatalysts for the transesterification of soybean oil to fatty acid ethyl esters (FAEE). The amounts of immobilized enzyme on the polymeric supports were similar for both the amorphous microspheres (PVA4) and the high crystalline microspheres (PVA25). However, the enzymatic activity of the immobilized enzymes was depended on the crystallinity degree of the PVA microspheres: enzymes immobilized on the PVA4 microspheres have shown low enzymatic activity (6.13 U mg-1), in comparison with enzymes immobilized on the high crystalline PVA25 microspheres (149.15 U mg-1). A synergistic effect was observed for the enzyme-PVA25 complex during the transesterification reaction of soybean oil to FAEE: transesterification reactions with free enzyme with the equivalent amount of enzyme that were immobilized onto the PVA25 microspheres (5.4 U) have yielded only 20% of FAEE, reactions with the pure highly crystalline microsphere PVA25 have not yielded FAEE, however reactions with the enzyme-PVA25 complexes have yielded 66.3% of FAEE. This synergistic effect of an immobilized enzyme on a polymeric support has not been observed before for transesterification reaction of triacylglycerides into FAEE. Based on ATR-FTIR, 23Na- and 13C-NMR-MAS spectroscopic data and the interaction of the polymeric network intermolecular hydrogen bonds with the lipases residual amino acids a possible explanation for this synergistic effect is provided. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The recalcitrance in grasses varies according to cell type and maturation. The origin of the recalcitrance in different regions from sugar cane internodes with varied lignin contents was evaluated. The efficiency of enzymatic hydrolysis was correlated with the chemical, micromorphological and microspectrophotometric characteristics of the samples. The internodes of three sugar cane hybrids were dissected into four different fractions. The outermost fraction and the rind were the most recalcitrant regions, whereas the pith-rind interface and the pith were less recalcitrant. Cellulose conversion reached 86% after 72h of enzymatic digestion of the pith from the hybrid with the lowest lignin content. There was an inversely proportional correlation between the area occupied by vascular bundles and the efficiency of cellulose hydrolysis. High cellulose and low lignin or hemicellulose contents enhanced the efficiency of enzymatic hydrolysis of the polysaccharides. The critical evaluation of the results permitted to propose an empirical parameter for predicting cellulose conversion levels that accounts for the positive effect of high cellulose and low lignin plus hemicellulose and the detrimental effect of abundant vascular bundles. The cellulose conversion levels fit well to this calculated parameter, following a second order polynomial with an r2 value of 0.96. © 2013 Elsevier B.V.
Resumo:
Although sugarcane consumption is very popular worldwide there are few studies regarding the postharvest storage of stalks that focus on controlling enzymatic browning. The objective of this study was to evaluate the quality of sugarcane stalks stored at 10±1°C in controlled atmosphere with various oxygen (O2) levels (1kPa, 5kPa, 10kPa, 15kPa, and 21kPa) and to verify the effect of this storage on the activities of polyphenoloxidase (PPO) and peroxidase (POD). At 1kPa and 5kPa O2, the stalks' respiratory rate, POD activity, and reducing sugar content were significantly less (P<0.05) than at higher O2 concentrations. In contrast, low O2 levels did not affect PPO activity or influence cane coloration. These results can be used to guide the choice of plastic films, making it possible to store sugarcane stalks in a controlled atmosphere. © 2013 Elsevier B.V.