152 resultados para Energy transfer


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Er3+ emission in the wide bandgap matrix SnO2 is observed either through a direct Er ion excitation process as well as by an indirect process, through energy transfer in samples codoped with Yb3+ ions. Electron-hole generation in the tin dioxide matrix is also used to promote rare-earth ion excitation. Photoluminescence spectra as function of temperature indicate a slight decrease in the emission intensity with temperature increase, yielding low activation energy, about 3.8meV, since the emission even at room temperature is rather considerable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sensitized photolysis of [Ru(NH3)(6)](2+) by the organic dye rhodamine B and biacetyl was studied under conditions in which only the sensitizer absorbs. The reaction products resulting from ammonia aquation and Ru(II) to Ru(III) oxidation are the same for direct and sensitized photolysis. The energy transfer rate constant, calculated from the fluorescence quenching of rhodamine B, is similar to that estimated from the limiting quantum yield of the photosensitized photoaquation of the complex. Both reactions originate from a common reactive low-lying ligand-field (LF) state, which is also responsible for the direct photolysis reactions. This state, which leads directly to photoaquation, seems to have a certain charge transfer to solvent (CTTS) character, which is responsible for the photo-oxidation products. Sensitization is effective with rhodamine B (17 450 cm(-1)) and biacetyl (19 000 cm(-1)), whereas no reaction is observed with neutral red (16 900 cm(-1)). These results show that the excited state responsible for the photochemical reactions lies in the energy range between 16 900 cm(-1) and 17 700 cm(-1) and possesses spin-orbit character.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bright blue upconversion emission by thulium ions in PbGeO3-PbF2-CdF2 glass triply doped with Nd3+-Tm3+-Yb3+ under diode laser excitation around 800 nm is reported. The results revealed that the Nd3+/Tm3+/Yb3+-codoped sample generated ten times more 475 nm blue upconversion fluorescence than the Yb3+-sensitized Tm3+-doped one, under the same excitation power. The upconversion process also showed a strong dependence upon the Yb3+ concentration. The results also indicated that the neodymium ions played a major role in the upconversion process by transfering the 800 nm excitation to thulium ions. The population of the Tm3+ ions (1)G(4) emitting level was accomplished through a multiion interaction involving ground-state absorption of pump photons around 800 nm by the Nd3+(I-4(9/2)-->H-2(9/2), F-4(5/2)) and Tm3+(H-3(6)-->F-3(4)) ions followed by energy-transfer processes involving the Nd3+-Yb3+(F-4(3/2), F-2(7/2)-->I-4(11/2), F-2(5/2)) and Yb3+-Tm3+(F-2(5/2), F-3(4)-->F-2(7/2), (1)G(4)) pairs. (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The flat-panel-display's (FPD) market and demand for highly efficient and colored luminescent films have been growing quickly. In this work, thin films were obtained from Pechini's solution by dip-coating. The green films were thermally treated at 873 K in order to get ZnO:Eu 1 at% thin film. A Schott(R) glass plate hydrothermally treated was used as substrate. The films have a mosaic shaped feature that was observed by optical microscopy. That feature is a result of substrate thermal treatment. The film deposition decreases the substrate transmittance in the visible range. When the F-7(0) -->L-5(6) (392nm) Eu3+ transition is excited, it is possible to detect emission from D-5(0) --> F-7(J) (J = 1, 2, 3 and 4) transitions. The D-5(0) --> F-7(2) transition is also observed by using ZnO excitation wavelengths indicating energy transfer from ZnO to Eu3+ ion. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Optical spectroscopic properties of Tm3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition D-1(2)-->F-3(4) of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (D-1(2)-->F-3(4)) and emission at 790 nm (H-3(4)-->H-3(6)). The radiative lifetimes of levels D-1(2) and H-3(4) were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions. (C) 2003 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intense red upconversion emission around 650 nm in PbGeO3-PbF2-CdF2 transparent glass ceramic containing beta-PbF2:Ho3+ nanocrystals, is presented. The holmium-doped vitroceramic samples were excited by a 980 nm diode laser source. The 650 nm upconversion signal was assigned to the F-5(5) --> I-5(8) transition of holmium ions. Very low intensity signals around 490 and 540 nm corresponding to the F-5(2,3) --> I-5(8) and S-4(2), F-5(4) --> I-5(8) transitions, respectively, were also detected. The upconversion excitation mechanism was achieved through a combination of stepwise phonon-assisted multiphoton absorption, cross-relaxation processes involving pairs of holmium ions, and excited-state absorption. Using a diode laser pump source around 850 nm green upconversion emission around 540 nm was the observed predominant signal. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The deactivation of the two lowest excited states of Ho3+ was investigated in Ho3+ singly doped and Ho3+, Pr3+-codoped fluoride (ZBLAN) glasses. We establish that 0.1-0.3 mol % Pr3+ can efficiently deactivate the first excited (I-5(7)) state of Ho3+ while causing a small reduction of similar to 40% of the initial population of the second excited (I-5(6)) state. The net effect introduced by the Pr3+ ion deactivation of the Ho3+ ion is the fast recovery of the ground state of Ho3+. The Burshstein model parameters relevant to the Ho3+-> Pr3+ energy transfer processes were determined using a least squares fit to the measured luminescence decay. The energy transfer upconversion and cross relaxation parameters for 1948, 1151, and 532 nm excitations of singly Ho3+-doped ZBLAN were determined. Using the energy transfer rate parameters we determine from the measured luminescence, a rate equation model for 650 nm excitation of Ho3+-doped and Ho3+, Pr3+-doped ZBLAN glasses was developed. The rate equations were solved numerically and the population inversion between the I-5(6) and the I-5(7) excited states of Ho3+ was calculated to examine the beneficial effects on the gain associated with Pr3+ codoping. (c) 2007 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sodium phosphoniobate glasses with the composition (mol%) 75NaPO(3)-25Nb(2)O(5) and containing 2 mol% Yb3+ and x mol% Er3+ (0.01 <= x <= 2) were prepared using the conventional melting/casting process. Er3+ emission at 1.5 mu m and infrared-to-visible upconversion emission, upon excitation at 976 nm, are evaluated as a function of the Er3+ concentration. For the lowest Er3+ content, 1.5 mu m emission quantum efficiency was 90%. Increasing the Er3+ concentration up to 2 mol%, the emission quantum efficiency was observed to decrease to 37% due to concentration quenching. The green and red upconversion emission intensity ratio was studied as a function of Yb3+ co-doping and the Er3+-Er3+ energy transfer processes. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminescence data for Eu3+ and Gd3+ in fluoroindate glasses are compared to those of a fluorozirconate glass. Emission is observed from Eu3+ 5D(J) (J = 0, 1, 2 and 3) and Gd3+ P-6(7/2) excited-state levels and the results put in evidence Eu-Eu and Gd-Eu energy transfer processes. Vibronic bands related to a 320 cm-1 vibrational mode could be observed for Eu3+ luminescent transitions with DELTAJ = 0, 1 and 2 and also for the P-6(7/2) --> S-8(7/2) transition of Gd3+. Lanthanide ion site symmetry is closer to an inversion center in fluoroindate glasses than it is in fluorozirconate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Er3+ doped SnO2 xerogels have been obtained from aqueous colloidal suspensions. Emission and excitation spectra were obtained and allowed the identification of two main families of sites for Er3+. In the first one Er3+ substitutes for Sn4+ in the SnO2 cassiterite structure. In the second Er3+ are found adsorbed at the SnO2 particle surface. For the first family of sites the technological important infrared Er3+ emission about 1.5 mum is efficiently excited through absorption at the SnO2 conduction band at 3.8 eV. on the other hand the emission due to adsorbed ions appears inhomogeneously broadened by the statistical distribution of sites available for Er3+ ions at the surface of the particles. Moreover it is not excited by the host. The emission of this second family of sites could be also excited by an energy transfer mechanism involving Yb3+ ions also adsorbed a posteriori at particles surface. Results are compared with spectra obtained for Eu3+ doped samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

70SiO(2)-30HfO(2) mol% planar waveguides, doped with Er3+ with concentrations ranging from 0.3 to 2 mol% were prepared by sol-gel route, using dip-coating deposition on vitreous-SiO2 substrates. Infrared-to-visible upconversion emission, upon excitation at 980 nm, has been observed for all the samples. The upconversion results in green, red and blue emissions. The investigation of the upconversion dynamic as a function of the Er3+ concentration and excitation power, show that processes such as excited state absorption and energy transfer upconversion are effective. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To gain a fuller understanding of the regions of the Staphylococcus aureus alpha-toxin important in pore formation, we have used Forster dipole-dipole energy transfer to demonstrate that a central glycine-rich region of alpha-toxin (the so-called ''hinge'' region) inserts deeply into the bilayer on association of toxin with liposomes. Mutant alpha-toxins with unique cysteine (C) residues at positions 69 and 130 [Palmer, M., et al. (1993) J. Biol. Chem. 268, 11959) were reacted with the C-specific fluorophore acrylodan, which acted as an energy donor. The chosen acceptor was N-(7-nitrobenz-2-oxa-13-diazol-4-yl)-1,2-bis(hexadecanoyl) -sn-glycero-3-phosphoethanolamine (NBD-PE). Measurement of the degree of donor quenching with increasing NBD-PE in the inner bilayer leaflet enables the distance of closest approach between donor and acceptor to be estimated. For toxin labeled with acrylodan at position 130 (in the hinge region), this distance is approximately 5 +/- 2 Angstrom, showing that the probe is close to the inner surface of the liposomes. A second probe labeled at position 69 (in the N-terminal domain) shows negligible energy transfer, indicating a distance of closest approach >40 Angstrom. This implies that this N-terminal region remains ''outside'' the liposome. We propose a model in which the central region of the alpha-toxin inserts into the membrane and possibly participates in forming the wall of the pore.