614 resultados para Enamel Microhardness
Resumo:
The aim of this in vitro study was to evaluate the erosive capacity of fermented milk beverages, as well as some of their properties that affect the demineralization of dental enamel (pH, buffering capacity, fluoride, calcium and phosphorus contents). Three different batches of 6 commercial brands of fermented milk beverages were analyzed. pH evaluation was accomplished using a potentiometer. The buffering capacity was measured by adding 1 mol L -1 NaOH. Fluoride concentration was assessed by an ion specific electrode after hexamethyldisiloxane-facilitated diffusion, and calcium and phosphorus concentrations were assessed by a colorimetric test using a spectrophotometer. Sixty specimens of bovine enamel were randomly assigned to 6 groups (n = 10). They were exposed to 4 cycles of demineralization in the fermented milk and remineralization in artificial saliva. Enamel mineral loss was determined by surface microhardness (%SMHC) and profilometric tests. The samples' pH ranged from 3.51 to 3.87; the buffering capacity ranged from 470.8 to 804.2 μl of 1 mol L -1 NaOH; the fluoride concentration ranged from 0.027 to 0.958 μgF/g; the calcium concentration ranged from 0.4788 to 0.8175 mgCa/g; and the phosphorus concentration ranged from 0.2662 to 0.5043 mgP/g. The %SMHC ranged from-41.0 to -29.4. The enamel wear ranged from 0.15 μm to 0.18 μm. In this in vitro study, the fermented milk beverages did not promote erosion of the dental enamel, but rather only a superficial mineral loss.
Resumo:
This study proposes a pH-cycling model for verifying the dose-response relationship in fluoride-releasing materials on remineralization in vitro. Sixty bovine enamel blocks were selected for the surface microhardness test (SMH 1). Artificial caries lesions were induced and surface microhardness test (SMH 2) was performed. Forty-eight specimens were prepared with Z 100, Fluroshield, Vitremer and Vitremer 1/4 diluted - powder/liquid, and subjected to a pH-cycling model to promote remineralization. After pH-cycling, final surface microhardness (SMH 3) was assessed to calculate percent recovery of surface microhardness (%SMH R). Fluoride present in enamel (μg F/mm 3) and in the pH-cycling solutions (μg F) was measured. Cross-sectional microhardness was used to calculate mineral content (ΔZ). There was no significant difference between Z 100 and control groups on analysis performed on - %SMH R, ΔZ, μ F and μ F/mm 3 (p>0.05). Results showed a positive correlation between %SMH R and μg F/mm 3 (r=0.9770; p=0.004), %SMH R and μg F (r=0.9939; p=0.0000001), DZ and μg F/mm 3 (r=0.9853; p=0.0002), ΔZ and μg F (r=0.9975; p=0.0000001) and between μg F/mm 3 and μg F (r=0.9819; p=0.001). The pH-cycling model proposed was able to verify in vitro dose-response relationship of fluoride-releasing materials on remineralization.
Resumo:
The aim of this study was to evaluate the possibility of fluoride solutions applied to enamel to protect pulp cells against the trans-enamel and transdentinal cytotoxicity of a 16% carbamide peroxide (CP) bleaching gel. The CP gel was applied to enamel/ dentin discs adapted to artificial pulp chambers (8 h/day) during 1, 7 or 14 days, followed by fluoride (0.05% or 0.2%) application for 1 min. The extracts (culture medium in contact with dentin) were applied to MDPC-23 cells for 1 h, and cell metabolism (MTT assay), alkaline phosphatase (ALP) activity and cell membrane damage (flow cytometry) were analyzed. Knoop microhardness of enamel was also evaluated. Data were analyzed statistically by ANOVA and Kruskal-Wallis tests (a=0.05). For the MTT assay and ALP activity, significant reductions between the control and the bleached groups were observed (p<0.05). No statistically significant difference occurred among bleached groups (p>0.05), regardless of fluoride application or treatment days. Flow cytometry analysis demonstrated 30% of cell membrane damage in all bleached groups. After 14 days of treatment, the fluoride-treated enamel presented significantly higher microhardness values than the bleached-only group (p<0.05). It was concluded that, regardless of the increase in enamel hardness due to the application of fluoride solutions, the treated enamel surface did not prevent the toxic effects caused by the 16% CP gel to odontoblast-like cells.
Resumo:
The aim of this study was to evaluate the effect of final irrigation protocols (17% EDTA, BioPure MTAD, SmearClear, and QMiX) on microhardness and erosion of root canal dentin. Fifty roots were sectioned transversely at the cement-enamel junction and each root was sectioned horizontally into 4-mm-thick slices. The samples were divided into five groups (n=10) according to the final irrigation protocol: G1: distilled water (control group); G2: 17% EDTA; G3: BioPure MTAD; G4: SmearClear; and G5: QMiX. The dentin microhardness was then measured with a load of 25 g for 10 s. Initially, the reference microhardness values were obtained for the samples without any etching. The same samples were then submitted to the final irrigation protocols. A new measure was realized and the difference between before and after the procedures was the dentin microhardness reduction. In sequence, the specimens were submitted to SEM analysis to verify the dentinal erosion. The Kruskal Wallis and Dunn tests (α=5%) were used to compare the results. The dentin microhardness decreased for all final irrigation protocols. There was no significant difference between groups 2, 3, 4, and 5 (P>0.05), but this groups presented significant dentin microhardness reduction than G1 (P<0.05). In G2, occurred the highest incidence of dentinal erosion (P<0.05). 17% EDTA, BioPure MTAD, SmearClear, and QMiX promoted significant dentin microhardness reduction. © 2013 Wiley Periodicals, Inc.
Resumo:
To evaluate changes in microhardness, roughness and surface morphology of dental enamel and composite resin after different tooth bleaching techniques. Material and Methods: Dental fragments from bovine incisors with composite resin restorations were submitted to different bleaching protocols: G1 – daily 8 hours application of a 10% carbamide peroxide (CP) gel during 21 days; G2: 3 applications of 15 minutes of a 38% hydrogen peroxide (H2O2) gel; G3: 38% H2O2 gel associated to irradiation with LED (470nm) during 6 minutes. The Knoop micro hardness of enamel and composite resin were evaluated at 1, 7, 14 and 21 days for G1, and after 1, 2 and 3 sessions for G2 and G3. The roughness and superficial morphology (atomic force microscopy) were evaluated before and at the end of the bleaching treatment. The data were analyzed by Mann-Whitney and Wilcoxon tests (=5%). Results: Significant reduction on enamel hardness was observed after 2 and 3 sessions for G2 and G3. For composite, the reduction occurred after 21 days for G1, and after 3 sessions for G2 and G3 (p<0.05). Significant reduction on roughness and superficial morphology were observed only for enamel of G1 group (p<0.05). Conclusion: The 10% CP gel promoted only superficial alterations on dental enamel, while the 38% H2O2 gel promoted mineral reduction of this dental tissue. All the bleaching protocols promoted reduction on hardness of composite resin.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: The objective of this study was to evaluate the effect of Er: YAG laser on the formation of CaF2, after the application of acidulated phosphate fluoride (APF), and its influence on the anti-cariogenic action in human dental enamel. Background Data: Er:YAG laser was designed to promote ablation of the enamel. However, the possibility of using this energy to increase the enamel's resistance to caries has hardly been explored, and neither has its interaction with the use of fluorides. Materials and Methods: One hundred and twenty blocks of enamel were allocated to four groups of 30 blocks each: (1) C, control group; (2) Er:YAG, laser; (3) APF; and (4) Er:YAG+APF. Of these, 80 blocks were submitted to pH cycling for 14 days. In the other 40 blocks, fluoride (CaF2) was measured before cycling. After pH cycling, surface microhardness (SMH), microhardness in cross-section (converted to mineral contents % vol. min.), and fluoride after cycling (40 blocks) were also determined. Results: SMH decreased in all groups. The control group showed the highest decrease, and Er:YAG+APF showed the lowest decrease (p < 0.05). Groups APF and Er:YAG showed the same results (p > 0.05). Mineral content at depths 10, 20, and 40 μm was lower in the control and Er:YAG groups, and higher in groups APF and Er:YAG+APF. CaF2 (μgF/cm2) deposited before pH cycling was higher in the APF group when compared to the Er:YAG+APF group. Control and Er:YAG groups showed the lowest values (p > 0.05). Conclusion: It was concluded that Er:YAG laser influenced the deposition of CaF2 on the enamel and showed a superficial anti-cariogenic action, but not in depth.
Resumo:
Superficial stains and irregularities of the enamel are generally what prompt patients to seek dental intervention to improve their smile. These stains or defects may be due to hypoplasia, amelogenesis imperfecta, mineralized white spots, or fluorosis, for which enamel microabrasion is primarily indicated. Enamel microabrasion involves the use of acidic and abrasive agents, such as with 37% phosphoric acid and pumice or 6% hydrochloric acid and silica, applied to the altered enamel surface with mechanical pressure from a rubber cup coupled to a rotatory mandrel of a low-rotation micromotor. If necessary, this treatment can be safely combined with bleaching for better esthetic results. Recent studies show that microabrasion is a conservative treatment when the enamel wear is minimal and clinically imperceptible. The most important factor contributing to the success of enamel microabrasion is the depth of the defect, as deeper, opaque stains, such as those resulting from hypoplasia, cannot be resolved with microabrasion, and require a restorative approach. Surface enamel alterations that result from microabrasion, such as roughness and microhardness, are easily restored by saliva. Clinical studies support the efficacy and longevity of this safe and minimally invasive treatment. The present article presents the clinical and scientific aspects concerning the microabrasion technique, and discusses the indications for and effects of the treatment, including recent works describing microscopic and clinical evaluations.
Resumo:
Objective. To investigate and compare the protective impact of the in situ formed salivary pellicle on enamel and dentine erosion caused by different acids at pH 2.6. Methods. Bovine enamel and dentine samples were exposed for 120 min in the oral cavity of 10 healthy volunteers. Subsequently, enamel and dentine pellicle-covered specimens were extraorally immersed in 1 ml hydrochloric, citric or phosphoric acid (pH 2.6, 60 s, each acid n=30 samples). Pellicle-free samples (each acid n=10) served as controls. Calcium release into the acid was determined by atomic absorption spectroscopy. The data were analysed by two-way ANOVA and Tukey's test (alpha=0.05). Results. Pellicle-covered samples showed significantly less calcium loss compared to pellicle-free samples in all acid groups. The mean (SD) pellicle protection (% reduction of calcium loss) was significantly better for enamel samples [60.9 (5.3)] than for dentine samples [30.5 (5.0)], but revealed no differences among the acids. Conclusion. The efficacy of the in situ pellicle in reducing erosion was 2-fold better for enamel than for dentine. Protection of the pellicle was not influenced by the kind of acid when enamel and dentine erosion was performed at pH 2.6.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)