62 resultados para Emerging Modelling Paradigms and Model Coupling
Resumo:
The theory of vibronic transitions in rare earth compounds is re-examined in the light of a more reliable representation for the ligand field Hamiltonian than the crude electrostatic model. General expressions that take into account the relevant contributions from the forced electric dipole and dynamic coupling mechanisms are derived for the vibronic intensity parameters. These include additional terms, from charge and polarizability gradients, which have not been considered in previous work. Emphasis is given to the relative signs of these various contributions. Under certain approximations these expressions may be conveniently written in terms of accessible ligand field parameters. A comparison with experimental values for the compounds Cs2NaEuCl6 and LiEuF4 is made and satisfactory agreement between theory and experiment is found. A discussion is given on the sensitivity of the calculated intensities to the values of radial integrals, interconfigurational energy differences and ligand field parameters that may be used. Finally, the problem in which a vibronic and an electronic level are in resonance, or near resonance, is analyzed. Suitable expressions to describe the effects of the even-rank components of the vibronic Hamiltonian are obtained. It is found that, depending on the strength of the vibronic interaction and the resonance conditions, the admixture between these two levels may lead to intensities of nearly equal values. © 1995.
Resumo:
Supervising and controlling the many processes involved in petroleum production is both dangerous and complex. Herein, we propose a multiagent supervisory and control system for handle continuous processes like those in chemical and petroleum industries In its architeture, there are agents responsible for managing data production and analysis, and also the production equipments. Fuzzy controllers were used as control agents. The application of a fuzzy control system to managing an off-shore installation for petroleum production onto a submarine separation process is described. © 2008 IEEE.
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, whose production and application have been largely increased internationally. This study focuses on the evaluation of the activation energy of the thermal decomposition of three pure fuels: farnesane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends (20% farnesene and 80% of fossil diesel - 20F80D and 20% farnesane, 50% fossil diesel and 30% biodiesel - 20F50D30B). Activation energy has been determined from thermogravimetry and Model-Free Kinetics. Results showed that not only the cetane number is important to understand the behavior of the fuels regarding ignition delay, but also the profile of the activation energy versus conversion curves shows that the chemical reactions are responsible for the performance at the beginning of the process. In addition, activation energy seemed to be suitable in describing reactivity in the case of blends of renewable and fossil fuels. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Psicologia do Desenvolvimento e Aprendizagem - FC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
New information technologies and new forms of documentary production have led archivists to rethink the role of archival science in the so-called information age. Since the late 1980s, the principles, methods and concepts stated by the well-known manuals of the 19th and the 20th centuries have been reconsidered along with their application to the organic sets of document in the 21st century. In this new scenario of reformulation and reinterpretation regarding the perspectives on archival knowledge organization, two trends with different approaches have emerged in North America and Europe: postmodern archival science and contemporary diplomatics, respectively. The first one was introduced by Terry Cook, who proposed a reformulation of the basic concepts and the functional analysis method focusing on the process and context of document creation. The second approach originated in Italy and incorporated all the theoretical and methodological models of classic diplomatics. The studies following this new trend were disseminated by Luciana Duranti and aimed to ensure the production, access and use of the documentation generated in the present times focusing on document typology, as opposed by the postmodern approach. The purpose of this study is to elucidate the connection points and distinct features between the two trends concerning the organization of archival knowledge.
Resumo:
Biofuels and their blends with fossil fuel are important energy resources, which production and application have been largely increased internationally. This study focus on the development of a correlation between apparent activation energy (Ea) and NOx emission of the thermal decomposition of three pure fuels: farnasane (renewable diesel from sugar cane), biodiesel and fossil diesel and their blends. Apparent Activation energy was determined by using thermogravimetry and Model-Free Kinetics. NOx emission was obtained from the European Stationary Cycle (ESC) with OM 926LA CONAMA P7/Euro 5 engine. Results showed that there is a linear correlation between apparent activation energy and NOx emission with R2 of 0,9667 considering pure fuels and their blends which is given as: NOx = 2,2514Ea - 96,309. The average absolute error of this correlation is 2.96% with respect to the measured NOx value. The main advantage of this correlation is its capability to predict NOx emission when either a new pure fuel or a blend of fuels is proposed to use in enginees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The problem of desiccation cracks in soils has received increasing attention in the last few years, in both experimental investigations and modeling. Experimental research has been mainly focused on the behavior of slurries subjected to drying in plates of different shapes, sizes and thickness. The main objectives of these studies were to learn about the process of crack formation under controlled environmental conditions, and also to better understand the effect of different factors (e.g. soil type, boundary conditions, soil thickness) on the morphology of the crack network. As for the numerical modeling, different approaches have been suggested lately to describe the behavior of drying cracks in soils. One aspect that it is still difficult to describe properly is the crack pattern observed in desiccated soils. This work presents a novel technique to model the behavior of drying soils. The crack patter observed in desiccation tests on circular plates are simulated with the main objective of predicting the effect of soil thickness on crack pattern. Good agreement between experimental results and model prediction are observed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)