79 resultados para Embryonal Stem Cells
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cell therapy has frequently been reported as a possible treatment for spinal trauma in humans and animals; however, without pharmacologically curative action on damage from the primary lesion. In this study, we evaluated the effect of administering human adipose-derived stem cells (hADSC) in rats after spinal cord injury. The hADSC were used between the third and fifth passages and a proportion of cells were transduced for screening in vivo after transplantation. Spinal cord injury was induced with a Fogarty catheter no. 3 inserted into the epidural space with a cuff located at T8 and filled with 80 mu L saline for 5 min. The control group A (n = 12) received culture medium (50 mu L) and group B (n = 12) received hADSC (1.2 x 10(6)) at 7 and 14 days post-injury, in the tail vein. Emptying of the bladder by massage was performed daily for 3 months. Evaluation of functional motor activity was performed daily until 3 months post-injury using the Basso-Beattie-Bresnahan scale. Subsequently, the animals were euthanized and histological analysis of the urinary bladder and spinal cord was performed. Bioluminescence analysis revealed hADSC at the application site and lungs. There was improvement of urinary bladder function in 83.3% animals in group B and 16.66% animals in group A. The analysis of functional motor activity and histology of the spinal cord and urinary bladder demonstrated no significant difference between groups A and B. The results indicate that transplanted hADSC improved urinary function via a telecrine mechanism, namely action at a distance.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tendinous lesions are very common in athlete horses. The process of tendon healing is slow and the quality of the new tissue is often inferior to the original, leading in many cases to recurrence of the lesion. One of the main reasons for the limited healing capacity of tendons is its poor vascularization. At present, cell therapy is used in equine practice for the treatment of several disorders including tendinitis, desmitis and joint disease. However, there is little information regarding the mechanisms of action of these cells during tissue repair. It is known that Mesenchymal Stem Cells (MSCs) release several growth factors at the site of implantation, some of which promote angiogenesis. Comparison of blood flow using power Doppler ultrasonography was performed after the induction superficial digital flexor tendon tendinitis and implantation of adipose tissue-derived MSCs in order to analyze the effect of cell therapy on tendon neovascularization. For quantification of blood vessel histopathological examinations were conducted. Increased blood flow and number of vessels was observed in treated tendons up to 30 days after cell implantation, suggesting promotion of angiogenesis by the cell therapy.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Colorectal cancer (CRC) is a disease whose genesis may include metabolic dysregulation. Cancer stem cells are attractive targets for therapeutic interventions since their aberrant expansion may underlie tumor initiation, progression, and recurrence. To investigate the actions of metabolic regulators on cancer stem cell-like cells (CSC) in CRC, we determined the effects of soybean-derived bioactive molecules and the anti-diabetes drug metformin (MET), alone and together, on the growth, survival, and frequency of CSC in human HCT116 cells. Effects of MET (60 μM) and soybean components genistein (Gen, 2 μM), lunasin (Lun, 2 μM), β-conglycinin (β-con, 3 μM), and glycinin (Gly, 3 μM) on HCT116 cell proliferation, apoptosis, and mRNA/protein expression and on the frequency of the CSC CD133(+)CD44(+) subpopulation by colonosphere assay and fluorescence-activated cell sorting/flow cytometry were evaluated. MET, Gen, and Lun, individually and together, inhibited HCT116 viability and colonosphere formation and, conversely, enhanced HCT116 apoptosis. Reductions in frequency of the CSC CD133(+)CD44(+) subpopulation with MET, Gen, and Lun were found to be associated with increased PTEN and reduced FASN expression. In cells under a hyperinsulinemic state mimicking metabolic dysregulation and without and with added PTEN-specific inhibitor SF1670, colonosphere formation and frequency of the CD133(+)CD44(+) subpopulation were decreased by MET, Lun and Gen, alone and when combined. Moreover, MET + Lun + Gen co-treatment increased the pro-apoptotic and CD133(+)CD44(+)-inhibitory efficacy of 5-fluorouracil under hyperinsulinemic conditions. Results identify molecular networks shared by MET and bioavailable soy food components, which potentially may be harnessed to increase drug efficacy in diabetic and non-diabetic patients with CRC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study assessed the effects of a single intracoronary injection of autologous stem cells on the cardiac function of dogs with Chagas cardiomyopathy. Bone-marrow-derived stem cells were delivered into the right and left coronary arteries of 5 mature dogs with mildly compromised cardiac function due to chronic Chagas cardiomyopathy. Blood pressure and electrocardiographic and echocardiographic parameters were recorded at monthly intervals for 6 mo in the 3 dogs that survived. Although no changes were observed in the electrocardiogram and blood pressure, there was a significant increase in peak velocity of aortic flow 3 mo after stem cell transplantation. Pre-ejection period, isovolumic relaxation time, and the Tei index of myocardial performance were reduced significantly 4 mo after the procedure. All significant changes persisted to the end of the study. The results suggest that the transplantation of autologous bone-marrow-derived stem cells into the coronary arteries of dogs with Chagas cardiomyopathy may have a beneficial effect but the small number of dogs studied was a limitation.
Resumo:
Superficial digital flexor tendonitis is an important cause of lameness in horses and its incidence ranges from 13% to 30%, depending on the horse's activity. This injury can occur in yearlings and compromise its carriers by reinjury or even impossibility to return to athletic life. In spite of the long period required for tendon repair, the scar tissue presents lack of elasticity and stiffness. As current treatment strategies produce only marginal results, there has been great interest in research of therapies that influence the quality or the speed of tendon repair. Stem cell therapy has shown promising results in degenerative diseases and cases of deficient healing processes. This study aims to evaluate the influence of autologous mesenchymal bone marrow stem cells in tendon healing, comparing treated and non-treated tendons. Superficial digital flexor tendonitis lesions were induced by collagenase infiltration in both forelimbs of 6 horses, followed by autologous implant in one of the forelimbs of each animal. The horses were evaluated using clinical, ultrasonographic, histopathologic, and immunohistochemical parameters. Tendon biopsies were performed at Day 48. Results found in the treatment group, such as high inflammatory cells infiltration, extracellular matrix synthesis, reduced amount of necrosis areas, small increase in cellular proliferation (KI-67/MIB-1), and low immunoreactivity to transforming growth factor P I, suggested the acceleration of tendon repair in this group. Further studies should be conducted in order to verify the influence of this treatment on later phases of tendon repair. Overall, after analysis of the results, we can conclude that cellular therapy with the mononuclear fraction of bone marrow has accelerated tendon repair at 48 days after treatment.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In amphibia, steroidogenesis remains quiescent in distinct seasonal periods, but the mechanism by which spermatogenesis is maintained under low steroidogenic conditions is not clear. In the present study, testosterone location in the testes of Rana catesbeiana was investigated immunohistochemically during breeding (summer) and nonbreeding (winter) periods. In winter, the scarce interstitial tissue exhibited occasional testosterone immunopositivity in the interstitial cells but the cytoplasm of primordial germ cells (PG cells) was clearly immunopositive. By contrast, in summer, PG cells contained little or no immunoreactivity whereas strong immunolabelling was present in the well-developed interstitial tissue. These results suggest that PG cells could retain testosterone during winter. This androgen reservoir could be involved in the control of early spermatogenesis in winter and/or to guarantee spermiogenesis and spermiation in the next spring/summer. The weak or negative immunoreaction in the summer PG cells might reflect consumption of androgen reservoir by the intense spermatogenic activity from spring to summer. Thus, besides acting as stem cells, PG cells of R. catesbeiana could exert an androgen regulatory role during seasonal spermatogenesis.
Resumo:
Today's scientific interest in tissue engineering for organ transplantations and regeneration from stem cells, allied with recent observations on biostimulation of tissues and cells by laser radiation, stands as a strong motivation for the present work, in which we examine the effects of the low power laser radiation onto planarians under regenerative process. To investigate those effects, a number of 60 amputated worms were divided in three study groups: a control group and two other groups submitted to daily 1 and 3 min long laser treatment sections at similar to 910 W/m(2) power density. A 685 nm diode laser with 35 mW optical power was used. Samples were sent to histological analysis at the 4th, the 7th and the 15th (lays after amputation. A remarkable increase in stem cells counts for the fourth day of regeneration was observed when the regenerating worms was stimulated by the laser radiation. Our findings encourage further research works on the influence of optical radiation onto stem cells and tissue regeneration. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this work we have:investigated the growth and differentiation of bone marrow stem cells in mice bearing Ehrlich ascites tumor-and treated with three dose-regimens of Dicyclopentadienyldichlorotitanium (IV) (DDCT). We also: studied the presence of colony stimulating factors In the serum of PDCT-treated animals as well-as the effects-of the drug on the survival of the tumor-bearing mice. The-results demonstrated that the myelosuppression developed in the tumor-bearing animals is prevented by the administration:of 1, 2 or 3 doses of 15 mg/kg DDCT. In the treatment with three doses, however, 23 % of the animals died. Moreover, DDCT treatment in normal animals resulted in increased numbers of CFU-GM. We observed the presence of stimulating factors in the serum of drug-treated animals which induced the growth and differentiation of bone marrow progenitor cells from normal animals in vitro. on the other hand, in vitro addition of the drug to these cultures had no effect. Thus, we conclude that the drug protects against the myelosuppression induced by the tumor and that this protection may be related to an indirect action of the drug. (C) 1998 International Society for Immunopharmacology. Published by Elsevier B.V. Ltd.
Resumo:
Background: Models for the study of hematopoietic stem cells in dogs provide important information for bone marrow transplantation in humans. Recent studies have reported the importance of human umbilical cord blood (UCB) as an alternative to allogenic bone marrow for hematopoietic reconstitution. However, there are no studies on the UCB cells of dogs. Objective: the aim of this experiment was to characterize and quantify the blood cells of the umbilical cord of dogs. Methods: the blood of the umbilical cord of 20 neonatal dogs, delivered at term, with a median gestation time of 58 days, was collected with a 5-mL syringe containing EDTA. Total RBC, WBC, and platelet counts, HCT, hemoglobin (Hgb) concentration, and RBC indices were determined using an automatic cell counter. The differential leukocyte count was determined manually in blood smears stained with May-Grunwald-Giemsa. Reticulocyte percentages were determined on blood smears stained with brilliant cresyl blue and counterstained with May-Grunwald Giemsa. Results: the MCHC and numbers of RBCs, WBCs, neutrophils, and eosinophils in UCB were lower as compared with reference values for the peripheral blood of healthy neonatal and adult dogs; whereas, the MCV and reticulocyte percentages were higher. Conclusion: Erythrocyte macrocytosis and hypochromasia in UCB were consistent with marked reticulocytosis and indicative of high erythropoietic activity. The results of this study are an important first step in the characterization of UCB from neonatal dogs.