165 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple mathematical model is developed to explain the appearance of oscillations in the dispersal of larvae from the food source in experimental populations of certain species of blowflies. The life history of the immature stage in these flies, and in a number of other insects, is a system with two populations, one of larvae dispersing on the soil and the other of larvae that burrow in the soil to pupate. The observed oscillations in the horizontal distribution of buried pupae at the end of the dispersal process are hypothesized to be a consequence of larval crowding at a given point in the pupation substrate. It is assumed that dispersing larvae are capable of perceiving variations in density of larvae buried at a given point in the substrate of pupation, and that pupal density may influence pupation of dispersing larvae. The assumed interaction between dispersing larvae and the larvae that are burrowing to pupate is modeled using the concept of non-local effects. Numerical solutions of integro-partial differential equations developed to model density-dependent immature dispersal demonstrate that variation in the parameter that governs the non-local interaction between dispersing and buried larvae induces oscillations in the final horizontal distribution of pupae. (C) 1997 Academic Press Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of beta -lactam antibiotics, such as a cephalosporin C fed-batch p recess in an aerated stirred-tank bioreactor with free cells of Cepha-losporium acremonium or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch profess. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations, For this study's model, modifications were introduced to take into account the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, eel concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data,and based on the experimental data and the mathematical model an optimal mass flow rate to maximize the bioprocess productivity could be proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial distribution of water and sugars in half-fresh apples dehydrated in sucrose solutions (30% and 50% w/w, 27 degrees C) for 2, 4 and 8 h, was determined. Each half was sliced as from the exposed surface. The density, water and sugar contents were determined for each piece. A mathematical model was fitted to the experimental data of the water and sucrose contents considering the overall flux and tissue shrinkage. A numerical method of finite differences permitted the calculation of the effective diffusion coefficients as a function of concentration, using material coordinates and integrating the two differential equations (for water and sucrose) simultaneously. The coefficients obtained were one or even two orders of magnitude lower than those for pure solutions and presented unusual concentration dependence. The behaviour of the apple tissue was also studied using light microscopy techniques to obtain images of the osmotically treated pieces (20%, 30% and 50% w/w sucrose solutions for 2, 4 and 8 h). (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The numerical simulation of the mixmaster universe serves the purpose of suggesting two kinds of results. The intrinsic time evolution, during contraction, will be seen to be nonchaotic. This is a necessary feature of relativistic cosmological models undergoing this kind of motion. The mixmaster model also provides a clue on how to define chaoticity for systems described by nonautonomous sets of differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A formulation used to determine the time-optimal geomagnetic attitude maneuvers subject to dynamic and geometric constraints is proposed in this paper. This was obtained by a direct search procedure based on a control function parametrization method, using linear programming to obtain numerical suboptimal solutions by linear perturbation. Due to its characteristics it can be used in small computers and to generate computer programs of general application. The dynamic modeling, the magnetic torque model and the suboptimal control procedure are presented. Simulation runs have verified the feasibility of the formulation thus derived and have shown a notable improvement in performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Half-fresh apples were immersed in sucrose solution (50% w/w, 27 degrees C) during different times of exposition (2, 4, and 8 h). Then each fruit was sliced from the transversal exposed surface. Density, water, and sugar content were determined for each slice. A mathematical model was fitted to experimental data of water and sucrose content considering the global flux and the tissue shrinkage. By numerical analysis, the binary effective diffusion coefficients as a function of concentration were calculated, using material coordinates and integrating simultaneously two differential equations (for water and sucrose). The coefficients obtained are one or even two orders of magnitude lower than the ones for pure solutions and present an unusual concentration dependence. This comparison shows the influence of the tissue resistance to the diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we present two-phase flow nonlinear parameter estimation for HFC's flow through capillary tube-suction line heat exchangers, commonly used as expansion devices in small refrigeration systems. The simplifying assumptions adopted are: steady state, pure refrigerant, one-dimensional flow, negligible axial heat conduction in the fluid, capillary tube and suction line walls. Additionally, it is considered that the refrigerant is free from oil and both phases are assumed to be at the same pressure, that is, surface tension effects are neglected. Metastable flow effects are also disregarded, and the vapor is assumed to be saturated at the local pressure. The so-called homogeneous model, involving three, first order, ordinary differential equations is applied to analyze the two-phase flow region. Comparison is done with experimental measurements of the mass flow rate and temperature distribution along capillary tubes working with refrigerant HFC-134a in different operating conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a dispersion-managed soliton in two-dimensional nonlinear Schrodinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct partial differential equation (PDE) and ordinary differential equation (ODE) simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shape modes of a damped-free beam model with a tip rotor are determined by using a dynamical basis that is generated by a fundamental spatial free response. This is a non-classical distributed model for the displacements in the transverse directions of the beam which turns out to be coupled through boundary conditions due to rotation. Numerical calculations are performed by using the Ritz-Rayleigh method with several approximating basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study an ultracold and dilute superfluid Bose-Fermi mixture confined in a strictly one-dimensional (1D) atomic waveguide by using a set of coupled nonlinear mean-field equations obtained from the Lieb-Liniger energy density for bosons and the Gaudin-Yang energy density for fermions. We consider a finite Bose-Fermi interatomic strength gbf and both periodic and open boundary conditions. We find that with periodic boundary conditions-i.e., in a quasi-1D ring-a uniform Bose-Fermi mixture is stable only with a large fermionic density. We predict that at small fermionic densities the ground state of the system displays demixing if gbf >0 and may become a localized Bose-Fermi bright soliton for gbf <0. Finally, we show, using variational and numerical solutions of the mean-field equations, that with open boundary conditions-i.e., in a quasi-1D cylinder-the Bose-Fermi bright soliton is the unique ground state of the system with a finite number of particles, which could exhibit a partial mixing-demixing transition. In this case the bright solitons are demonstrated to be dynamically stable. The experimental realization of these Bose-Fermi bright solitons seems possible with present setups. © 2007 The American Physical Society.