90 resultados para Diagram linkz


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we present the complete massless and massive one-loop triangle diagram results using the negative dimensional integration method (NDIM). We consider the following cases: massless internal fields; one massive, two massive with the same mass m and three equal masses for the virtual particles. Our results are given in terms of hypergeometric and hypergeometric-type functions of the external momenta (and masses for the massive cases) where the propagators in the Feynman integrals are raised to arbitrary exponents and the dimension of the space-time is D. Our approach reproduces the known results; it produces other solutions as yet unknown in the literature as well. These new solutions occur naturally in the context of NDIM revealing a promising technique to solve Feynman integrals in quantum field theories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the main difficulties in studying quantum field theory, in the perturbative regime, is the calculation of D-dimensional Feynman integrals. In general, one introduces the so-called Feynman parameters and, associated with them, the cumbersome parametric integrals. Solving these integrals beyond the one-loop level can be a difficult task. The negative-dimensional integration method (NDIM) is a technique whereby such a problem is dramatically reduced. We present the calculation of two-loop integrals in three different cases: scalar ones with three different masses, massless with arbitrary tensor rank, with and N insertions of a two-loop diagram.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the accretion-induced magnetic field decay model, in which a frozen field and an incompressible fluid are assumed, we obtain the following results: (1) an analytic relation between the magnetic field and spin period, if the fastness parameter of the accretion disk is neglected (The evolutionary tracks of accreting neutron stars in the P-B diagram in our model are different from the equilibrium period lines when the influence of the fastness parameter is taken into account.); (2) the theoretical minimum spin period of an accreting neutron star is max(1.1ms (DeltaM/M(circle dot))(-1)R(6)(-5/14) I(45)(M/M(circle dot))(-1/2),1.1ms (M/M(circle dot))(-1/2) R(6)(17/14)), independent of the accretion rate (X-ray luminosity) but dependent on the total accretion mass, DeltaM; however, the minimum magnetic field depends on the accretion rate; (3) the magnetic field strength decreases faster with time than does the period.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently the CP trajectory diagram was introduced to demonstrate the difference between the intrinsic CP violating effects to those induced by matter for neutrino oscillation. In this Letter we introduce the T trajectory diagram. In these diagrams the probability for a given oscillation process is plotted versus the probability for the CP- or the T-conjugate processes, which forms an ellipse as the CP- or T-violating phase is varied. Since the CP- and the T-conjugate processes are related by CPT symmetry, even in the presence of matter, these two trajectory diagrams are closely related with each other and form a unified description of neutrino oscillations in matter. (C) 2002 Published by Elsevier B.V. B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Feynman diagrams are the best tool we have to study perturbative quantum field theory. For this very reason the development of any new technique that allows us to compute Feynman integrals is welcome. By the middle of the 1980s, Halliday and Ricotta suggested the possibility of using negative-dimensional integrals to tackle the problem. The aim of this work is to revisit the technique as such and check on its possibilities. For this purpose, we take a box diagram integral contributing to the photon-photon scattering amplitude in quantum electrodynamics using the negative-dimensional integration method. Our approach enables us to quickly reproduce the known results as well as six other solutions as yet unknown in the literature. These six new solutions arise quite naturally in the context of negative-dimensional integration method, revealing a promising technique to handle Feynman integrals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription. [S1050-2947(99)04604-1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)