433 resultados para Dental biofilm


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our understanding of dental plaque biofilm has evolved since the nonspecific plaque hypothesis that considered plaque as a nonspecific mass of native microorganisms that, because of lack of oral hygiene, builds up in proportions great enough to overcome the host resistance threshold and affect the tooth structure and tooth supporting tissues. A great diversity of microorganisms-over 700 species-was detected in the oral cavity, and evidence shows that the investigation of specific microorganisms or associations of microorganisms as etiological agents for periodontal diseases and caries is not a simplistic approach. Although clinical evidence shows that oral mechanical hygiene is fundamental to prevent and control caries and periodontal disease, it is important to highlight that optimal control is not achieved by most individuals. Thus the complementary use of chemotherapeutic agents has been investigated as a way to overcome the deficiencies of mechanical oral hygiene habits, insofar as they reduce both plaque formation and gingival inflammation, and represent a valid strategy to change the biofilm and maintain dental and periodontal health. The role of the dental professional is to monitor patients and offer them the best recommendations to preserve oral health throughout their life. With this in mind, chemical control should be indicated as part of daily oral hygiene, together with mechanical procedures, for all individuals who present supragingival and/or subgingival biofilm, taking into account age, physical and/or psychological limitations, allergies, and other factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GOALS: This research evaluated the change in arterial pressure before and after two procedures of dental prophylaxis: Jet system baking soda and conventional prophylaxis and patient's opinion regarding the comfort of each one. MATERIAL AND METHOD: Were selected 32 patients with age between 18 to 30 years old, who need prophylaxis to remove biofilm and were subjected to three different types of treatment: sodium bicarbonate jet (G1), prophylaxis conventional (G2) and placebo (G3) at intervals of one month between them. Patients were divided randomly. Arterial pressure was measured by wrist digital Omron HEM – 6111. The measurements were realized in four times: before the prophylaxis, immediately the end of procedure, 15 and 30 minutes after finished of treatment. Patient comfort was measured by a Visual Analog Scale (VAS) after the end of the treatment. The data were analyzed using the variance test. The results showed that there was statistically significant difference to the comfort of the procedures. RESULTS: There was a statistically significant difference to the comfort of the procedures, and G2 and G3 better than G1. Regarding the variation of arterial pressure there was no statistically significant difference between groups. CONCLUSIONS: The methods of prophylaxis no effect on arterial pressure, but conventional prophylaxis is more comfortable than others treatments

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To evaluate the adherence of Streptococcus mutans to the surface of the amalgam and copper/aluminum alloy samples and also evaluate the release of metallic ions. METHODS: The prepared medium was changed every 72 h and analyzed by atomic absorption spectrophotometer. Samples were removed from the prepared medium at 15, 30, 48 and 60 days. RESULTS: The result shows that ions released were statistically different among all groups, and so were both biofilm and pits formation and the corrosion induced by the S. mutans in both types of samples. SEM observation of the samples immersed in the prepared medium with S. mutans showed adherence of microorganisms on the whole surface, in all groups. CONCLUSIONS: The S. mutans adhere to both amalgam and copper/aluminum alloy causing corrosion of those restorations. S. mutans produced a greater ions release in Cu/Al alloy; in amalgam, the ions release was not influenced by exposure to S. mutans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Currently, new methods to reduce biofilm formation on biomaterials are very studied, for example the use of silver nanoparticles, which were bactericidal. However, there are few studies investigating the benefits of these particles in dental restorative materials. Objective: This study aimed to compare in vitro the Streptococcus mutans biofilm formation on conventional light-cured composite resin with that on experimental light-cured composite resin, modified with silver nanoparticles. Material and methods: Discs were produced with either conventional resin (control group) and resin modified with different concentrations of silver nanoparticles, 0.1%, 0.3% and 0.6 % wt. (groups 1, 2 and 3, respectively). The samples were incubated in bacterial suspension (S. mutans) enriched with 20% sucrose to promote biofilm growth on the surfaces. Incubation times were 1, 4 and 7 days. After each period, adherent biofilms were disaggregated by ultrasound. Then, the numbers of viable cells recovered from the biofilms were counted through the serial dilution method. A morphological analysis of biofilm was also performed by Scanning Electron Microscopy. The data were subjected to Anova and Tukey’s test (α = 0.05). Results: The number of viable cells was statistically lower in groups 2 and 3 than in group 1 and control group, after the three incubation periods, without statistical difference between groups 2 and 3. The number of viable cells was statistically lower in group 1 than in control group, after 4 and 7 days of incubation. Conclusion: Resins modified with silver presented reduction of S. mutans biofilm on their surfaces, according to the conditions of this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: In the present work, a susceptibility and efficacy of the Ti–7.5Mo alloy and Ti alloy to bacterial biofilm formation after surface treatment was evaluated. Methods and materials: The alloy Ti–7.5Mo was obtained in arc furnace under an argon atmosphere. Ingots were then homogenized under vacuum at 1100 °C for 86.4 ks to eliminate chemical segregation and after cold worked discs were cutting. Samples were immersed in NaOH aqueous solution (5 M) and treated at 450 °C. Biofilms were grown in Ti–7.5Mo discs immersed in sterile brain heart infusion broth (BHI)containing 5% sucrose, inoculated with microbial suspension (106 cells/ml) and incubated for 5 days. Next, the discs were placed in tubes with sterile physiological solution 0.9% sodium chloride (NaCl) and sonicated for to disperse the biofilms. Tenfold serial dilutions were carried and aliquots seeded in selective agar, which were then incubated for 48 h. Then, the numbers CFU/ml (log 10) were counted and analyzed statistically. Scanning electron microscopy (SEM) on discs with biofilms groups was performed, atomic force microscope (AFM) and contact angle. Results: The results show that there is a 5% difference in bacterial adhesion between pure titanium and Ti–7.5Mo alloy. Conclusion: It was concluded that the greater the roughness, the greater the hydrophilic effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)