69 resultados para Convex programming
Resumo:
This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.
Resumo:
Goal Programming (GP) is an important analytical approach devised to solve many realworld problems. The first GP model is known as Weighted Goal Programming (WGP). However, Multi-Choice Aspirations Level (MCAL) problems cannot be solved by current GP techniques. In this paper, we propose a Multi-Choice Mixed Integer Goal Programming model (MCMI-GP) for the aggregate production planning of a Brazilian sugar and ethanol milling company. The MC-MIGP model was based on traditional selection and process methods for the design of lots, representing the production system of sugar, alcohol, molasses and derivatives. The research covers decisions on the agricultural and cutting stages, sugarcane loading and transportation by suppliers and, especially, energy cogeneration decisions; that is, the choice of production process, including storage stages and distribution. The MCMIGP allows decision-makers to set multiple aspiration levels for their problems in which the more/higher, the better and the less/lower, the better in the aspiration levels are addressed. An application of the proposed model for real problems in a Brazilian sugar and ethanol mill was conducted; producing interesting results that are herein reported and commented upon. Also, it was made a comparison between MCMI GP and WGP models using these real cases. © 2013 Elsevier Inc.
Resumo:
In this study, a novel approach for the optimal location and contract pricing of distributed generation (DG) is presented. Such an approach is designed for a market environment in which the distribution company (DisCo) can buy energy either from the wholesale energy market or from the DG units within its network. The location and contract pricing of DG is determined by the interaction between the DisCo and the owner of the distributed generators. The DisCo intends to minimise the payments incurred in meeting the expected demand, whereas the owner of the DG intends to maximise the profits obtained from the energy sold to the DisCo. This two-agent relationship is modelled in a bilevel scheme. The upper-level optimisation is for determining the allocation and contract prices of the DG units, whereas the lower-level optimisation is for modelling the reaction of the DisCo. The bilevel programming problem is turned into an equivalent single-level mixed-integer linear optimisation problem using duality properties, which is then solved using commercially available software. Results show the robustness and efficiency of the proposed model compared with other existing models. As regards to contract pricing, the proposed approach allowed to find better solutions than those reported in previous works. © The Institution of Engineering and Technology 2013.
Resumo:
Image restoration is a research field that attempts to recover a blurred and noisy image. Since it can be modeled as a linear system, we propose in this paper to use the meta-heuristics optimization algorithm Harmony Search (HS) to find out near-optimal solutions in a Projections Onto Convex Sets-based formulation to solve this problem. The experiments using HS and four of its variants have shown that we can obtain near-optimal and faster restored images than other evolutionary optimization approach. © 2013 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Quando a área a ser irrigada apresenta um elevado gradiente de declive na direção das linhas de derivação, uma opção de dimensionamento é o uso de tubulações com vários diâmetros para economizar no custo e também para manter a variação de pressão dentro dos limites desejados. O objetivo deste trabalho foi desenvolver um modelo de programação linear para dimensionar sistemas de irrigação por microaspersão com linhas de derivação com mais de um diâmetro e operando em declive, visando a minimização do custo anualizado da rede hidráulica e do custo anual com energia elétrica, além de assegurar que a máxima variação de carga hidráulica na linha será respeitada. Os dados de entrada são: configuração da rede hidráulica do sistema de irrigação, custo de todos os componentes da rede hidráulica e custo da energia. Os dados de saída são: custo anual total, diâmetro da tubulação em cada linha do sistema, carga hidráulica em cada ponto de derivação e altura manométrica total. Para ilustrar a potencialidade do modelo desenvolvido, ele foi aplicado em um pomar de citros no Estado de São Paulo, Brasil. O modelo demonstrou ser eficiente no dimensionamento do sistema de irrigação quanto à obtenção da uniformidade de emissão desejada. O custo anual com bombeamento deve ser considerado no dimensionamento de sistemas de irrigação por microaspersão porque ele gera menores valores de custo anual total quando comparado com a mesma alternativa que não considera aquele custo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper proposes a Fuzzy Goal Programming model (FGP) for a real aggregate production-planning problem. To do so, an application was made in a Brazilian Sugar and Ethanol Milling Company. The FGP Model depicts the comprehensive production process of sugar, ethanol, molasses and derivatives, and considers the uncertainties involved in ethanol and sugar production. Decision-makings, related to the agricultural and logistics phases, were considered on a weekly-basis planning horizon to include the whole harvesting season and the periods between harvests. The research has provided interesting results about decisions in the agricultural stages of cutting, loading and transportation to sugarcane suppliers and, especially, in milling decisions, whose choice of production process includes storage and logistics distribution. (C)2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper a novel Branch and Bound (B&B) algorithm to solve the transmission expansion planning which is a non-convex mixed integer nonlinear programming problem (MINLP) is presented. Based on defining the options of the separating variables and makes a search in breadth, we call this algorithm a B&BML algorithm. The proposed algorithm is implemented in AMPL and an open source Ipopt solver is used to solve the nonlinear programming (NLP) problems of all candidates in the B&B tree. Strategies have been developed to address the problem of non-linearity and non-convexity of the search region. The proposed algorithm is applied to the problem of long-term transmission expansion planning modeled as an MINLP problem. The proposed algorithm has carried out on five commonly used test systems such as Garver 6-Bus, IEEE 24-Bus, 46-Bus South Brazilian test systems, Bolivian 57-Bus, and Colombian 93-Bus. Results show that the proposed methodology not only can find the best known solution but it also yields a large reduction between 24% to 77.6% in the number of NLP problems regarding to the size of the systems.
Resumo:
Maternal undernutrition affects the foetal development, promoting renal alterations and adult hypertension. The present study investigates, in adult male rats, the effect of food restriction in utero on arterial blood pressure changes (AP), and its possible association with the number of nephrons, renal function and angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MCR) receptors expression. The daily food supply to pregnant rats was measured and one group (n=5) received normal quantity of food (NF) while the other group received 50% of that (FR50) (n=5). The AP was measured weekly. At 16 weeks of life, fractionator’s method was used to estimate glomeruli number in histological slices. The renal function was estimate by creatinine and lithium clearances. Blood and urine samples were collected to biochemical determination of creatinine, sodium, potassium and lithium. At 90th and 23rd days of life, kidneys were also processed to AT1R, AT2R, GR and MCR immunolocalization and for western blotting analysis. FR50 offspring shows a significant reduction in BW (FR50: 5.67 ± 0.16 vs. 6.84 ± 0.13g in NF, P<0.001) and increased AP from 6th to 12nd week (6thwk FR50: 149.1 ± 3.4 vs. 125.1 ± 3.2mmHg in NF, P<0.001and, 12ndwk FR50: 164.4 ± 4.9 vs. 144.0 ± 3.3 mmHg in NF, P=0.02). Expression of AT1R and AT2R were significantly decreased in FR50 (AT1, 59080 ± 2709 vs. 77000 ± 3591 in NF, P=0.05; AT2, 27500 ± 95.50 vs. 67870 ± 1509 in NF, P=0.001) while the expression of GR increased in FR50 (36090 ± 781.5 vs. 4446 ± 364.5 in NF, P=0.0007). The expression of MCR did not change significantly. We also verified a pronounced decrease in fractional urinary sodium excretion in FR50 offspring (0.03 ± 0.02 vs. 0.06 ± 0.04 in NF, p=0.03). This occurred despite unchanged creatinine clearance. The study led us to suggest that fetal undernutrition, with increased fetal exposure... (Complete abstract click electronic access below)
Resumo:
In this paper a mathematical model that combines lot-sizing and cutting-stock problems applied to the furniture industry is presented. The model considers the usual decisions of the lot sizing problems, as well as operational decisions related to the cutting machine programming. Two sets of a priori generated cutting patterns are used, industry cutting patterns and a class of n-group cutting patterns. A strategy to improve the utilization of the cutting machine is also tested. An optimization package was used to solve the model and the computational results, using real data from a furniture factory, show that a small subset of n-group cutting patterns provides good results and that the cutting machine utilization can be improved by the proposed strategy.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS