49 resultados para Circulating Tumour Cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diabetes interferes with bone formation and impairs fracture healing, an important complication in humans and animal models. The aim of this study was to examine the impact of diabetes on mesenchymal stem cells (MSCs) during fracture repair.Fracture of the long bones was induced in a streptozotocin-induced type 1 diabetic mouse model with or without insulin or a specific TNF alpha inhibitor, pegsunercept. MSCs were detected with cluster designation-271 (also known as p75 neurotrophin receptor) or stem cell antigen-1 (Sca-1) antibodies in areas of new endochondral bone formation in the calluses. MSC apoptosis was measured by TUNEL assay and proliferation was measured by Ki67 antibody. In vitro apoptosis and proliferation were examined in C3H10T1/2 and human-bone-marrow-derived MSCs following transfection with FOXO1 small interfering (si)RNA.Diabetes significantly increased TNF alpha levels and reduced MSC numbers in new bone area. MSC numbers were restored to normal levels with insulin or pegsunercept treatment. Inhibition of TNF alpha significantly reduced MSC loss by increasing MSC proliferation and decreasing MSC apoptosis in diabetic animals, but had no effect on MSCs in normoglycaemic animals. In vitro experiments established that TNF alpha alone was sufficient to induce apoptosis and inhibit proliferation of MSCs. Furthermore, silencing forkhead box protein O1 (FOXO1) prevented TNF alpha-induced MSC apoptosis and reduced proliferation by regulating apoptotic and cell cycle genes.Diabetes-enhanced TNF alpha significantly reduced MSC numbers in new bone areas during fracture healing. Mechanistically, diabetes-enhanced TNF alpha reduced MSC proliferation and increased MSC apoptosis. Reducing the activity of TNF alpha in vivo may help to preserve endogenous MSCs and maximise regenerative potential in diabetic patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urothelial bladder carcinoma (UBC) is heterogeneous in its pathology and clinical behaviour. Evaluation of prognostic and predictive biomarkers is necessary, in order to produce personalised treatment options. The present study used immunohistochemistry to evaluate UBC sections containing tumour and non-tumour areas from 76 patients, for the detection of p-mTOR, CD31 and D2-40 (blood and lymphatic vessels identification, respectively). Of the non-tumour and tumour sections, 36 and 20% were scored positive for p-mTOR expression, respectively. Immunoexpression was observed in umbrella cells from non-tumour urothelium, in all cell layers from non-muscle-invasive (NMI) tumours (including expression in superficial cells), and in spots of cells from muscle-invasive (MI) tumours. Positive expression decreased from non-tumour to tumour urothelium, and from pTl/pTis to pT3/pT4 tumours; however, the few pT3/pT4 positive cases had worse survival rates, with 5-year disease-free survival being significantly lower. Angiogenesis occurrence was impaired in pT3/pT4 tumours that did not express p-mTOR. In conclusion, p-mTOR expression in non-tumour umbrella cells is likely a reflection of their metabolic plasticity, and extension to the inner layers of the urothelium in NMI tumours is consistent with an enhanced malignant potential. The expression in cell spots in a few MI tumours and absence of expression in the remaining tumours is intriguing and requires further research. Additional studies regarding the up- and downstream effectors of the mTOR pathway should be conducted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Canine transmissible venereal tumour (CTVT) is a neoplasm transmitted among healthy dogs by direct contact with injured skin and/or mucous tissue. This study aimed to identify the TP53 gene, messenger RNA (mRNA) as well as the expression of p53, Bcl-2 and p63 proteins in histological sections of 13 CTVT samples at different stages of evolution. The in situ hybridization (ISH) and in situ reverse transcriptase polymerase chain reaction (RT-PCR) assays were used, which showed the DNA homologous to TP53 and its respective mRNA in 92.3% of the samples. We detected p53, p63 and Bcl-2 proteins in most of the cell samples in different grades of intensity. In addition, 46% of the samples were in the progressive and 54% in the regression phase. This is the first description of these proteins and a detailed study of their role in CTVT cells needs to be addressed in or to verify how these cells undergo apoptosis.