118 resultados para Chromium alloys.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present study was designed to analyse the average depth of the microporosity of a nickel-chromium (Ni-Cr) system alloy (Verabond II). The metal surface was subject to one of the following surface treatment: (i) Electrolytic etching in nitric acid 0.5 N at a current density of 250 mA cm(-2) ; (ii) chemical etching with CG-Etch etchant; and (iii) Sandblasting with alumina particles 50 mum. Half of the samples were polished before the surface treatments. The depth of porosity was measured through photomicrographs (500x) with a profilometer, and the data were statistically analysed using an analysis of variance (anova) followed by Tukey's test. The conclusions were (i) Differents surface treatment of the Ni-Cr system alloy lead to different depths of microporosity; (ii) the greatest depth of porosity was observed in non-polished alloy; (iii) the greatest and identical depth of microporosity was observed following electrolytic etching and chemical etching; (iv) the least and identical depth of microporosity was observed with chemical etching and sandblasting with alumina particles 50 mum, and (v) Chemical etching showed an intermediary depth.
Resumo:
Nanocrystalline FeCuNbSiB alloys obtained from the partial crystallization of amorphous alloys have attracted technological attention due to their excellent magnetic properties, but the relationship between corrosion resistance and magnetic properties is not well established. The influence of Nb as an alloying element and effect of partial crystallization on the corrosion resistance of Fe73.5Si13.5B10Cu1, Fe73.5Si13.5B7Nb3Cu1 and Fe73.5Si13.5B5Nb5Cu1 amorphous alloys were studied and the effect of corrosion on magnetization saturation flux density, B-s, was investigated. The addition of niobium on amorphous alloys increases the corrosion resistance. The raise of Nb content from 3 to 5% increases the corrosion resistance also. A partial crystallization increases the corrosion resistance of the samples with Nb. However, in the samples without Nb, the partial crystallization diminishes the corrosion resistance. The values of B-s depend on the alloy corrosion resistance.) (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Statement of problem. Different combinations of Co-Cr alloys bonded to ceramic have been used in dentistry; however, the bond strength of ceramic to metal can vary because of different compositions of these alloys.Purpose. The purpose of this study was to evaluate the shear bond strength of a dental ceramic to 5 commercially available Co-Cr alloys.Material and methods. Five Co-Cr alloys (IPS d.SIGN 20, IPS d.SIGN 30, Remanium 2000, Heranium P, and Wirobond C) were tested and compared to a control group of an Au-Pd alloy (Olympia). Specimen disks, 5 mm high and 4 mm in diameter, were fabricated with the lost-wax technique. Sixty specimens were prepared using opaque and dentin ceramics (VITA Omega 900), veneered, 4 mm high and 4 mm in diameter, over the metal specimens (n = 10). The shear bond strength test was performed in a universal testing machine with a crosshead speed of 0.5 mm/min. After shear bond testing, fracture surfaces were evaluated in a stereomicroscope under x25 magnification. Ultimate shear bond strength (MPa) data were analyzed with 1-way ANOVA and the Tukey HSD test (alpha = .05).Results. The mean (SID) bond strengths (MPa) were: 61.4 (7.8) for Olympia; 94.0 (18.9) for IPS 20; 96.8 (10.2) for I PS 30; 75.1 (12.4) for Remanium; 71.2 (14.3) for Heranium P; and 63.2 (10.9) for Wirobond C. Mean bond strengths for IPS 20 and IPS 30 were not significantly different, but were significantly (P<.001) higher than mean bond strengths for the other 4 alloys, which were not significantly different from each other.Conclusions. Bond strength of a dental ceramic to a Co-Cr alloy is dependent on the alloy composition.
Resumo:
Purpose: To evaluate the influence of surface treatment on the shear bond strength between a Co-Cr alloy and two ceramics.Materials and Methods: Forty-eight metal cylinders were made (thickness: 4 mm, height: 3.7 mm) according ISO TR 11405. The 48 metallic cylinders were divided into four groups (n = 12), according to the veneering ceramic (StarLight Ceram and Duceram Kiss) and surface treatments: air-particle abrasion with Al(2)O(3) or tungsten drill (W). Gr1: StarLight + Al(2)O(3); Gr2: StarLight + W; Gr3: Duceram + Al(2)O(3); and Gr4: Duceram + W. The specimens were aged using thermal cycling (3000 x, 5 to 55 degrees C, dwell time: 30 seconds, transfer time: 2 seconds). The shear test was performed with a universal testing machine, using a load cell of 100 kg (speed: 0.5 mm/min) and a specific device. The bond strength data were analyzed using ANOVA and Tukey's test (5%), and the failure modes were analyzed using an optical microscope (30x).Results: The means and standard deviations of the shear bond strengths were (MPa): G1 (57.97 +/- 11.34); G2 (40.62 +/- 12.96); G3 (47.09 +/- 13.19); and G4 (36.80 +/- 8.86). Ceramic (p = 0.03252) and surface treatment (p = 0.0002) significantly affected the mean bond strength values.Conclusions: Air-particle abrasion with Al(2)O(3) improved the shear bond strength between metal and ceramics used.
Resumo:
The effect of Fe addition on the microstructural properties and the corrosion resistance of Al-Zn-Mg alloys submitted to different heat treatments (cast, annealed and aged), has been studied in chloride solutions using optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), cyclic polarization (CP) and open circuit potential (o.c.p.) measurements. The presence of 0.3% Fe in the alloy limited the growth of the MgZn2 precipitates, both in the annealed and in the quenched specimens. No effect of Cr on the grain size in the presence of Fe was found because of the accumulation of Cr in the Fe-rich particles. Fe in the Al-Zn-Mg alloys also made them more susceptible to pitting. Pitting occurred mainly near the Fe-rich particles both, under o.c.p. conditions in O-2-saturated solutions and during the CP.
Resumo:
Comparative wear and corrosion properties of Cr3C2-NiCr (CC-TS) (a high-velocity oxyfuel [HVOF]) and hard chromium (HC) coating's obtained on a steel substrate have been studied. The structural characterization was done before and after measurements by optical microscopy, scanning electron microscopy, and scanning white light interferometry. Wear and corrosion properties were evaluated by ball on disk (ASTM G99-90), rubber wheel (ASTM G65-91), and electrochemical measurements of open circuit and polarization curves. The best corrosion and wear resistance was for the CC-TS obtained by HVOF. The open-circuit potential values measured for both samples after 18 h of immersion we're: -0.240 and -0.550 V, respectively, for CC-TS and HC, versus Ag/AgCl,KClsat. Three orders of magnitude lower volume loss were found for CC-TS (HVOF) after friction tests compared with HC.
Resumo:
The electrochemical behavior in 0.5 M H2SO4 at 25 degreesC of a Cu-Al(9.3 wt%)-Ag(4.7 wt%) alloy submitted to different heat treatments and an annealed Cu- Al(9.7 wt%)-Ag(34.2 wt%) were studied by means of open circuit potential (E-mix) measurements, potentiodynamic polarizations and cyclic voltammetry. SEM and EDX microanalysis were used to examine the changes caused by the electrochemical perturbations. The steady state potentials observed for the studied samples were correlated in terms of the phases present in the alloys surface. The resulting E/I potentiodynamic profiles were explained in terms of the potentiodynamic behavior of pure copper and pure silver. The presence of aluminum decreased the extent of copper oxidation. In the apparent Tafel potential region, two anodic Tafel slopes were obtained: 40 mV dec(-1) in the low potential region and 130 mV dec(-1) in the high potential region, which were related with the electrochemical processes involving copper oxidation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The kinetics of Ag-rich precipitates formation in the Cu-2 wt.% Al alloy with additions of 2, 4, 6, 8, 10 and 12 wt.% Ag was studied using microhardness changes with temperature and time, differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that an increase in the Ag content decreases the activation energy for Ag-rich precipitates formation, and that it is possible to estimate the values of the diffusion and nucleation activation energies for the Ag precipitates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The thermal behavior of Cu-Al alloys with 17, 19 and 21 at.%Al was examined by differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The presence of the gamma phase (Al4Cu9) was clearly detected for the Cu-19 at.%Al alloy and caused the alpha (2) phase disordering process in two stages. The tendency to increase the alpha (2) dissolution precipitates with the increase in the Al content seems to be reverted for compositions at about 21 at.%Al and the heating/cooling ratio seems to influence the thermal response of this process. The presence of the endothermic peak corresponding to the beta (1)--> beta transformation depends on an incomplete beta decomposition reaction. The variation of the heating rate showed that the beta (1)-->(alpha+gamma (1)) decomposition is the dominant reaction for alloys containing 19 and 21 at.%Al.
Resumo:
The effect of gas tungsten are welding on the microstructure and electrochemical corrosion of Al-Zn-Mg-Fe alloys submitted to different heat treatments (as fabricated, annealed and aged) has been studied using optical microscopy, SEM, TEM, EDX, cyclic voltammetry and corrosion potential measurements in chloride solutions. The electrochemical techniques were very sensitive to the change in the phase compositions produced by welding. Welding caused a decrease in the mean grain size, in the hardness and in the corrosion resistance of the age-hardened alloys. The structure of the latter became strongly altered by welding to lead to phase compositions very close to those of the cold rolled and annealed specimens. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The isothermal kinetics of Ag precipitation was studied in Cu-Al-Ag alloys with concentrations ranging from 2 to 8 wt.%Al and 2 to 12 wt.%Ag, using scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX) and microhardness measurements. The results indicated a change in the precipitates growing mechanism from diffusion to interface controlled process, probably due to a change in the nature of the interface with the Ag and Al enrichment of the precipitates. (C) 2006 Elsevier B.V. All rights reserved.