139 resultados para Chlorobutyl Rubber
Resumo:
This study present a novel NO sensor made of a spin trap (iron(II)-diethyldithiocarbamate complex, FeDETC) incorporated in a latex rubber matrix and works as a trap for NO, which is detectable by Electron Paramagnetic Resonance (EPR). We explored the optimization of our sensors changing systematically two fabrication parameters: the latex rubber matrix temperature of polymerization and FeDETC concentration inside the matrix. The sensor was prepared in four different temperatures: 4, 10, 20 and 40°C. The FeDETC concentration was also varied from 0.975 to 14.8 mM. We observed a variation of the EPR signals from the sensors prepared at different conditions. We found a high stability of the EPR response from our sensor, 40 days at RT. The best sensor was made with a latex rubber matrix polymerized at 10°C and with a FeDETC concentration of 14.8 mM. In vivo tests show good biocompatibility of our sensor. © 2007 Asian Network for Scientific Information.
Resumo:
The aim of this study was to evaluate the surgical use of the natural latex biomembrane in diaphragmatic injuries produced experimentally in rabbits. Fifteen healthy adult male and female New Zealand rabbits were employed. The rabbits were assigned to the experimental groups I, II, III, IV and V and analyzed on the 15th, 30th, 45th, 60th and 90th days post surgery, respectively. The surgical procedure consisted in the access to the diaphragm at the eighth right intercostal space, removal of a circle portion of approximately 1.5 cm in diameter following surgical repair with a latex membrane. Macroscopically, it was observed an excellent healing process during the experimental period. The clinical observations, complemented by the histological analysis, indicate that the latex membrane is useful for repair of traumatic inuries of the diaphragm of rabbits.
Resumo:
Our aim was to investigate the population fluctuation and the damage caused by the phytophagous mites Calacarus heveae Feres, Tenuipalpus heveae Baker, and Eutetranychus banksi (McGregor) on clones FX 2784, FX 3864, and MDF 180 in rubber tree crops from southeastern Bahia, Brazil. Moreover, we tested for the influence of climatic variables on occurrence patterns of these species throughout weekly samples performed from October to April. The infestation peaks was between mid-January and late February. The clones FX 2784 and FX 3864 had the highest infestations and more severe damage possibly caused by C. heveae, which was the most frequent and abundant species in all clones. We found that sunlight duration and rainfall were the most important factors for C. heveae while T. heveae was affected by rainfall and temperature. Eutetranychus banksi was only affected by sunlight duration. However, the best models had low goodness of fit. We concluded that the clones FX 2784 and FX 3864 had a higher susceptibility to mite attack, and the association between climatic variables and favorable physiological conditions were determinant for the population increase of the species from January to April. © 2012 Sociedade Entomológica do Brasil.
Resumo:
The objective of the present study was to develop a sequential sampling plan for the decision-making process to control Tenuipalpus heveae Baker (Acari: Tenuipalpidae), an important pest of the rubber tree crop. The experimental area was represented by 1,000 plants of the RRIM 600 clone divided in 100 plots with 10 plants each. Leaves were collected and the number of mites determined under laboratory conditions. The sequential sampling plan was developed in accordance with the Sequential Test Likelihood Ratio. The value 0.10 was pre-established for α and β representing type I and type II errors, respectively. The level of control adopted was six mites per 12 cm2. The operating characteristic curve and the curve of maximum expected sample were determined. Two lines were generated: the upper one, when the condition for chemical control is recommended (S1 = 23.3080 + 2.1972); and the lower, when chemical control is not recommended (S0 = -23.3080 + 2.1972). Sample size for the decision-making process to control T. heveae requires 6 to 18 plants. © 2013 Sociedade Entomológica do Brasil.
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
Rubber production in the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg.] can be expressed differently in different environments. Thus the objective of the present study was to select productive progenies, stable and responsive in time and among locations. Thirty progenies were assessed by early yield tests at three ages and in three locations. A randomized block design was used with three replications and ten plants per plot, in 3 × 3 m spacing. The procedure of the mixed linear Reml/Blup model-restricted maximum likelihood/best non-biased linear prediction was used in the genetic statistical analyses. In all the individual analyses, the values observed for the progeny average heritability (ĥpa 2) were greater than those of the additive effect based on single individuals (ĥa 2) and within plot additive (ĥad 2). In the joint analyses in time, there was genotype × test interaction in the three locations. When 20 % of the best progenies were selected the predicted genetic gains were: Colina GG = 24.63 %, Selvíria GG = 13.63 %, and Votuporanga GG = 25.39 %. Two progenies were among the best in the analyses in the time and between locations. In the joint analysis among locations there was only genotype × location interaction in the first early test. In this test, selecting 20 %, the general predicted genetic gain was GG = 25.10 %. Identifying progenies with high and stable yield over time and among locations contributes to the efficiency of the genetic breeding program. The relative performance of the progenies varies depending of the age of early selection test. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Rubber nanocomposites containing different concentrations of ferroelectric and paramagnetic nanoparticles were fabricated. Nanostructures of ferroelectric potassium strontium niobate and paramagnetic nickel-zinc ferrite were synthesized using a modified polyol method. The nanoparticle characterization was carried out by transmission electron microscopy and X-ray diffraction, showing that the materials were produced with nanometer dimensions, specific crystallinity and microstrain. Mechanical tests such as hardness type Shore A, stress-strain and compression resistance were performed. They showed that increasing the concentration of nanoparticles enhance the rigidity of vulcanized films of natural rubber and this change is more pronounce for the nanocomposites formed with ferrite nanoparticles, likely due to the effect of its morphological and surface properties. © 2013 by American Scientific Publishers.
Resumo:
Natural rubber (NR) is a renewable polymer with a wide range of applications, which is constantly tailored, further increasing its utilizations. The tensile strength is one of its most important properties susceptible of being enhanced by the simple incorporation of nanofibers. The preparation and characterization of natural-rubber based nanocomposites reinforced with bacterial cellulose (BC) and bacterial cellulose coated with polystyrene (BCPS), yielded high performance materials. The nanocomposites were prepared by a simple and green process, and characterized by tensile tests, dynamical mechanical analysis (DMA), scanning electron microscopy (SEM), and swelling experiments. The effect of the nanofiber content on morphology, static, and dynamic mechanical properties was also investigated. The results showed an increase in the mechanical properties, such as Young's modulus and tensile strength, even with modest nanofiber loadings. © 2013 American Chemical Society.
Resumo:
Thermal-oxidative degradation behaviours of raw natural rubber (NR) have been investigated by using thermogravimetry analysis in inert and oxidative atmospheres and the plasticity retention index (PRI). The activation energy E a, was calculated using Horowitz-Metzger and Coats-Redfern methods and compared with PRI. The E a values obtained by each method were in good agreement with each other. The June samples are the least stable rubbers among the studied ones, whereas February samples exhibited the highest values of activation energy, therefore in agreement with the PRI behaviour, which indicates that the thermo-oxidative stability of the June samples are the poorest during the thermo-oxidative degradation reaction. Natural rubber is a product of biological origin, and thus these variations in the values of thermal behaviour and PRI might be related to the genetic differences and alterations of climatic conditions that act directly on the synthesis of non-rubber constituents, which are generally reflected in latex and rubber properties. © 2013 Institute of Materials, Minerals and Mining.
Resumo:
Natural rubber/gold nanoparticles membranes (NR/Au) were studied by ultrasensitive detection and chemical analysis through surface-enhanced Raman scattering and surface-enhanced resonance Raman scattering in our previous work (Cabrera et al., J. Raman Spectrosc. 2012, 43, 474). This article describes the studies of thermal stability and mechanical properties of SERS-active substrate sensors. The composites were prepared using NR membranes obtained by casting the latex solution as an active support (reducing/establishing agents) for the incorporation of colloidal gold nanoparticles (AuNPs). The nanoparticles were synthesized by in situ reduction at different times. The characterization of these sensors was carried out by thermogravimetry, differential scanning calorimetry, scanning electron microscopy (SEM) microscopy, and tensile tests. It is suggested an influence of nanoparticles reduction time on the thermal degradation of NR. There is an increase in thermal stability without changing the chemical properties of the polymer. For the mechanical properties, the tensile rupture was enhanced with the increase in the amount of nanoparticles incorporated in the material. © 2013 Wiley Periodicals, Inc.
Resumo:
Green chemistry is an innovative way to approach the synthesis of metallic nanostructures employing eco-friendly substances (natural compounds) acting as reducing agents. Usually, slow kinetics are expected due to, use of microbiological materials. In this report we study composites of natural rubber (NR) membranes fabricated using latex from Hevea brasiliensis trees (RRIM 600) that works as reducing agent for the synthesis of gold nanoparticles. A straight and clean method is presented, to produce gold nanoparticles (AuNP) in a flexible substrate or in solution, without the use of chemical reducing reagents, and at the same time providing good size's homogeneity, reproducibility, and stability of the composites. Copyright © 2013 Flávio C. Cabrera et al.
Resumo:
A produção da seringueira é reduzida pelas plantas daninhas que competem por recursos ambientais; portanto, a época e duração do controle de plantas daninhas influencia a interferência das plantas daninhas. Os objetivos deste estudo foram: avaliar o crescimento de plantas de seringueira (Hevea brasiliensis), determinar o período crítico para controle das plantas daninhas e avaliar a recuperação do crescimento das seringueiras que conviveram com plantas daninhas por diferentes períodos de tempo após o plantio. Dois grupos de tratamentos foram estabelecidos em condições de campo, no primeiro ano de investigação: um grupo conteve períodos crescentes de infestação de plantas daninhas, enquanto o outro conteve períodos crescentes de controle das plantas daninhas, também incluindo uma testemunha livre de plantas daninhas e uma testemunha com infestação total de plantas daninhas. No segundo ano da investigação, as plantas daninhas foram totalmente controladas. Urochloa decumbens foi a planta daninha dominante (mais de 90% de cobertura). O crescimento da cultura foi grandemente reduzido devido à interferência de plantas daninhas. A altura de plantas decresceu mais rapidamente que qualquer outra característica. Altura de planta, massa seca de folhas e área foliar decresceram em 99%, 97% e 96%, respectivamente, e foram as características mais reduzidas. A altura de plantas também se recuperou mais rapidamente que qualquer outra característica quando o período de controle das plantas daninhas foi entendido. Contudo, a massa seca do caule aumentou em 750%, fazendo desta a característica mais recuperada. O período crítico para o controle de plantas daninhas foi entre 4 e 9½ meses após o plantio, no primeiro ano; contudo, as seringueiras mostraram expressiva recuperação do crescimento quando as plantas daninhas foram controladas ao longo do segundo ano.
Resumo:
The paper discusses the application of High Strength Concrete (HSC) technology for concrete production with the incorporation of Rice Husk Ash (RHA) residues by replacing a bulk of the material caking and rubber tires with partial aggregate volume, assessing their influence on the mechanical properties and durability. For concrete with RHA and rubber, it was possible to reduce the brittleness by increasing the energy absorbing capacity. With respect to abrasion, the RHA and rubber concretes showed lower mass loss than the concrete without residues, indicating that this material is attractive to be used in paving. It is thus hoped that these residues may represent a technological and ecological alternative for the production of concrete in construction works.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)