169 resultados para Chitosan. Adsorption kinetics. Kinetic Model. Adsorption Isotherm.Tetracycline. Sodium Cromoglycate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High density poly(ethylene) has been submitted to thermal degradation alone, and in the presence of silicoaluminophosphate SAPO-37. The processes were carried out in a reactor connected on line to a gas chromatograph/mass spectrometer in order to analyze the evolved products. Polymer degradation was also evaluated by thermogravimetry, from room temperature until 800 degreesC, under nitrogen dynamic atmosphere, with multiple heating rates. From TG curves, the activation energy related to degradation process was calculated using the Flynn and Wall multiple heating rate kinetic model for pure polymer (PE) and for polymer in the presence of catalyst (PE/S37). SAPO-37 showed good selectivity for low molecular mass hydrocarbons in PE catalytic degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents results concerning the preparation of redispersible tin oxide nanoparticles achieved by using Tiron molecule ((OH)(2)C(6)H(2) (SO(3)Na)(2)) as surface modifying agent. The adsorption isotherm measurements show that an amount of 10 wt.% of Tiron is need to recover the SnO(2) nanoparticles surface with a monolayer. These nanoparticles can be easily redispersed in tetramethyl ammonium hydroxide at pH greater than or equal to11 until a powder concentration of 12 vol.% of tin. Under these conditions, hydrodynamic particle size is about 7 nm and increases until 52 nm at pH 6 due to the aggregation phenomenon. The time evolution of the viscoelastic properties indicates that the suspensions at pH 12.5, containing 12 vol.% tin oxide and 10 wt.% of surface modifier are kinetically stable. After thermal treatment at different temperature the powder characterisation evidences that the presence of Tiron monolayer at the nanoparticles surface increases the thermal stability of the porous texture and prevent the micropore size growth. This set of results contributes to satisfy the demand for more controlled synthesis of nanoparticles with high thermal stability as required for fabrication of ultrafiltration ceramic membranes. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work the influence of Ag additions on the thermal behavior of the Cu-11 mass% Al alloy was studied using differential scanning calorimetry, in situ X-ray diffractometry and scanning electron microscopy. The results indicated that changes in the heating rate shift the peak attributed to alpha phase formation to higher temperatures, evidencing the diffusive character of this reaction. The activation energy value for the alpha phase formation reaction, obtained from a non-isotherm kinetic model, is close to that corresponding to Cu atoms self diffusion, thus confirming that this reaction is dominated by Cu atoms diffusion through the martensite matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural evolution during sintering of compacted SnO2 sol-gel powder was investigated using nitrogen adsorption isotherm analysis. Results show that for sintering temperatures up to 400°C the samples have a fractal pore size distribution. As the sintering temperature increases, a structural rearragement occurs, allowing an increase of the efficiency of particle packing and the reduction of fractality. Above 400°C, the pore size growth associated with grain coalescence is the main structural change observed as the sintering temperature increases. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple hybrid synthesis processing method was developed to synthesize γ-MnO2 nanocrystalline particles. The polyol method was modified by the addition of nitric acid in order to allow the synthesizing of single-phase Mn3O4 in a large scale. In the sequence, the acid digestion technique was used to transform Mn3O4 into γ-MnO2. Structural and morphological characterization was carried out by X-ray diffractometry, Infrared and Raman spectroscopy, thermogravimetric analysis, nitrogen adsorption isotherm, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties were investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The synthesized material exhibits a specific capacitance of 125.1 F g-1 at a mass loading of 0.98 mg cm-2. The relation between structural features and electrochemical activity is discussed by comparing the synthesized material with commercial electrolytic manganese dioxide. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The propulsion of most of the operating satellites comprises monopropellant (hydrazine - N2H4) or bipropellant (monometilydrazine - MMH and nitrogen tetroxide) chemical systems. When some sample of the propellant tested fails, the entire sample lot shall be rejected, and this action has turned into a health problem due to the high toxicity of N2H 4. Thus, it is interesting to know hydrazine thermal behavior in several storage conditions. The kinetic parameters for thermal decomposition of hydrazine in oxygen and nitrogen atmospheres were determined by Capela-Ribeiro nonlinear isoconversional method. From TG data at heating rates of 5, 10, and 20 C min-1, kinetic parameters could be determined in nitrogen (E = 47.3 ± 3.1 kJ mol-1, lnA = 14.2 ± 0.9 and T b = 69 C) and oxygen (E = 64.9 ± 8.6 kJ mol-1, lnA = 20.7 ± 3.1 and T b = 75 C) atmospheres. It was not possible to identify a specific kinetic model for hydrazine thermal decomposition due to high heterogeneity in reaction; however, experimental f(α)g(α) master-plot curves were closed to F 1/3 model. © 2013 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Microbiologia Agropecuária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)