180 resultados para Canonical momenta
Resumo:
In this work we present constructions of algebraic lattices in Euclidean space with optimal center density in dimensions 2, 3, 4, 6, 8 and 12, which are rotated versions of the lattices Λn, for n = 2,3,4,6,8 and K12. These algebraic lattices are constructed through twisted canonical homomorphism via ideals of a ring of algebraic integers. Mathematical subject classification: 18B35, 94A15, 20H10.
Resumo:
The boundary conditions of the bosonic string theory in non-zero B-field background are equivalent to the second class constraints of a discretized version of the theory. By projecting the original canonical coordinates onto the constraint surface we derive a set of coordinates of string that are unconstrained. These coordinates represent a natural framework for the quantization of the theory.
Resumo:
The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.
Resumo:
Large back-to-back correlations of observable fermion-anti-fermion pairs are predicted to appear, if the mass of the fermions is modified in a thermalized medium. The back-to-back correlations of protons and anti-protons are experimentally observable in ultra-relativistic heavy ion collisions, similarly to the Andreev reflection of elections off the boundary of a superconductor. While quantum statistics suppresses the probability of observing pairs of fermions with nearby momenta, the fermionic back-to-back correlations are positive and of similar strength to bosonic back-to-back correlations. (C) 2001 Elsevier B.V. B,V, All rights reserved.
Resumo:
In this work we compute the most general massive one-loop off-shell three-point vertex in D-dimensions, where the masses, external momenta and exponents of propagators are arbitrary. This follows our previous paper in which we have calculated several new hypergeometric series representations for massless and massive (with equal masses) scalar one-loop three-point functions, in the negative dimensional approach.
Resumo:
In this article we present the complete massless and massive one-loop triangle diagram results using the negative dimensional integration method (NDIM). We consider the following cases: massless internal fields; one massive, two massive with the same mass m and three equal masses for the virtual particles. Our results are given in terms of hypergeometric and hypergeometric-type functions of the external momenta (and masses for the massive cases) where the propagators in the Feynman integrals are raised to arbitrary exponents and the dimension of the space-time is D. Our approach reproduces the known results; it produces other solutions as yet unknown in the literature as well. These new solutions occur naturally in the context of NDIM revealing a promising technique to solve Feynman integrals in quantum field theories.
Resumo:
We use the light-front machinery to study the behavior of a relativistic free particle and obtain the quantum commutation relations from the classical Poisson brackets. We argue that their usual projection onto the light-front coordinates from the covariant commutation relations show that there is an inconsistency in the expected correlation between canonically conjugate variables time x(+) and energy p(-). This incompatibility between canonical conjugate variables in the light front is discussed in the context of Poisson brackets and a suggestion is made on how to avoid it.
Resumo:
The behavior of the transition pion form factor for processes gamma (*)gamma --> pi(0) and gamma (*)gamma (*) --> pi(0) at large values of space-like photon momenta is estimated within the nonlocal covariant quark-pion model. It is shown that, in general, the coefficient of the leading asymptotic term depends dynamically on the ratio of the constituent quark mass and the average virtuality of quarks in the vacuum and kinematically on the ratio of photon virtualities. The kinematic dependence of the transition form factor allows us to obtain the relation between the pion light-cone distribution amplitude and the quark-pion vertex function. The dynamic dependence indicates that the transition form factor gamma (*)gamma -->, pi(0) at high momentum transfers is very sensitive to the nonlocality size of nonperturbative fluctuations in the QCD vacuum. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Within a wide class of models, the CERN LEP2 lower limit of 95 GeV on the chargino mass implies gluinos are heavier than similar to 300 GeV. In this case electroweak (W) over tilde(1)(W) over tilde(1) production and (W) over tilde(1)(Z) over tilde(2) production are the dominant supersymmerry (SUSY) processes at the Fermilab Tevatron, and the extensively examined isolated trilepton signal From (W) over tilde(1)(Z) over tilde(2) production assumes an even greater importance. We update our previous calculations of the SUSY reach of luminosity upgrades of the Fermilab Tevatron in this channel incorporating (i) decay matrix elements in the computation of the momenta of leptons from chargino and neutralino decays, (ii) the trilepton background from W*Z* and W*gamma* production which, though neglected in previous analyses, turns out to be the dominant background, and finally, (iii) modified sets of cuts designed to reduce these new backgrounds and increase the range of model parameters for which the signal is observable. We show our improved projections for the reach for SUSY of both the Fermilab Main Injector and the proposed TeV33 upgrade. We also present opposite sign same flavor dilepton invariant mass distributions as well as the p(T) distributions of leptons in SUSY trilepton events, and comment upon how the inclusion of decay matrix elements impacts upon the Tevatron reach, as well as upon the extraction of neutralino masses.
Resumo:
The construction of non-Abelian affine Toda models is discussed in terms of its underlying Lie algebraic structure. It is shown that a subclass of such non-conformal two-dimensional integrable models naturally leads to the construction of a pair of actions, which share the same spectra and are related by canonical transformations.
Resumo:
The cross section for the inclusive production of isolated photons has been measured in p (p) over bar collisions at root s = 1.96 TeV with the DO detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity vertical bar n vertical bar < 0.9. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We employ the NJL model to calculate mesonic correlation functions at finite temperature and compare results with recent lattice QCD simulations. We employ an implicit regularization scheme to deal with the divergent amplitudes to obtain ambiguity-free, scale-invariant and symmetry-preserving physical amplitudes. Making the coupling constants of the model temperature dependent, we show that at low momenta our results agree qualitatively with lattice simulations.
Resumo:
Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in p (p) over bar collisions at a center-of-mass energy root s=1.96 TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb(-1). Azimuthal correlations are stronger at larger transverse momenta. These are well described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where contributions with low transverse momentum are significant.
Resumo:
We present a class of three-dimensional integrable structures associated with the Darboux-Egoroff metric and classical Euler equations of free rotations of a rigid body. They are obtained as canonical structures of rational Landau-Ginzburg potentials and provide solutions to the Painleve VI equation.
Resumo:
We present a search for Wb (b) over bar production in p (p) over bar collisions at root s=1.96 TeV in events containing one electron, an imbalance in transverse momentum, and two b-tagged jets. Using 174 pb(-1) of integrated luminosity accumulated by the D0 experiment at the Fermilab Tevatron collider, and the standard-model description of such events, we set a 95% C.L. upper limit on Wb (b) over bar production of 6.6 pb for b quarks with transverse momenta p(T)(b)> 20 GeV and b (b) over bar separation in pseudorapidity-azimuth space Delta R-bb> 0.75. Restricting the search to optimized b (b) over bar mass intervals provides upper limits on WH production of 9.0-12.2 pb for Higgs-boson masses of 105-135 GeV.