77 resultados para CHAOTIC VIBRATIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a computational method is presented to simulate the movements of vocal folds in three dimensions. The proposed model consists of a mesh free structure where each vertex is connected its neighbor through a group spring-damper. Forced oscillations were studied by time varying surface forces. The preliminary results using this model are similar with the literature and with the experimental stroboscopic observations of larynx. © 2006 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time monitoring of events in an industrial plant is vital, to monitor the actual conditions of operation of the machinery responsible for the manufacturing process. A predictive maintenance program includes condition monitoring of the rotating machinery, to anticipate possible conditions of failure. To increase the operational reliability it is thus necessary an efficient tool to analyze and monitor the equipments, in real-time, and enabling the detection of e.g. incipient faults in bearings. To fulfill these requirements some innovations have become frequent, namely the inclusion of vibration sensors or stator current sensors. These innovations enable the development of new design methodologies that take into account the ease of future modifications, upgrades, and replacement of the monitored machine, as well as expansion of the monitoring system. This paper presents the development, implementation and testing of an instrument for vibration monitoring, as a possible solution to embed in industrial environment. The digital control system is based on an FPGA, and its configuration with an open hardware design tool is described. Special focus is given to the area of fault detection in rolling bearings. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context. Close encounters with (1) Ceres and (4) Vesta, the two most massive bodies in the main belt, are known to be a mechanism of dynamical mobility able to significantly alter proper elements of minor bodies, and they are the main source of dynamical mobility for medium-sized and large asteroids (D > 20 km, approximately). Recently, it has been shown that drift rates caused by close encounters with massive asteroids may change significantly on timescales of 30 Myr when different models (i.e., different numbers of massive asteroids) are considered. Aims. So far, not much attention has been given to the case of diffusion caused by the other most massive bodies in the main belt: (2) Pallas, (10) Hygiea, and (31) Euphrosyne, the third, fourth, and one of the most massive highly inclined asteroids in the main belt, respectively. Since (2) Pallas is a highly inclined object, relative velocities at encounter with other asteroids tend to be high and changes in proper elements are therefore relatively small. It was thus believed that the scattering effect caused by highly inclined objects in general should be small. Can diffusion by close encounters with these asteroids be a significant mechanism of long-term dynamical mobility? Methods. By performing simulations with symplectic integrators, we studied the problem of scattering caused by close encounters with (2) Pallas, (10) Hygiea, and (31) Euphrosyne when only the massive asteroids (and the eight planets) are considered, and the other massive main belt asteroids and non-gravitational forces are also accounted for. Results. By finding relatively small values of drift rates for (2) Pallas, we confirm that orbital scattering by this highly inclined object is indeed a minor effect. Unexpectedly, however, we obtained values of drift rates for changes in proper semi-major axis a caused by (10) Hygiea and (31) Euphrosyne larger than what was previously found for scattering by (4) Vesta. These high rates may have repercussions on the orbital evolution and age estimate of their respective families. © 2013 ESO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an application is considered of both active and passive controls, to suppression of chaotic behavior of a simple portal frame, under the excitation of an unbalanced DC motor, with limited power supply (non-ideal problem). The adopted active control strategy consists of two controls: the nonlinear (feedforward) in order to keep the controlled system in a desirable orbit, and the feedback control, which may be obtained by considering state-dependent Riccati equation control to bringing the system into the desired orbit using a magneto rheological (MR) damper. To control the electric current applied in control of the MR damper the Bouc-Wen mathematical model was used to the MR damper. The passive control was obtained by means of a nonlinear sub-structure with properties of nonlinear energy sink. Simulations showed the efficiency of both the passive control (energy pumping) and active control strategies in the suppression of the chaotic behavior. © The Author(s) 2012.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A robust exponential function based controller is designed to synchronize effectively a given class of Chua's chaotic systems. The stability of the drive-response systems framework is proved through the Lyapunov stability theory. Computer simulations are given to illustrate and verify the method. © 2013 Patrick Louodop et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the idea that chaos concepts might be useful for understanding the thermalization in gauge theories. The SU(2) Higgs model is discussed as a prototype of system with gauge fields coupled to matter fields. Through the numerical solution of the equations of motion, we are able to characterize chaotic behavior via the corresponding Lyapunov exponent. Then it is demonstrated that the system's approach to equilibrium can be understood through direct application of the principles of Statistical Mechanics. © 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the application of a technique, known as synchrophasing, to the control of machinery vibration. It is applicable to machinery installations, in which several synchronous machines, such as those driven by electrical motors, are fitted to an isolated common structure known as a machinery raft. To reduce the vibration transmitted to the host structure to which the machinery raft is attached, the phase of the electrical supply to the motors is adjusted so that the net transmitted force to the host structure is minimised. It is shown that while this is relatively simple for an installation consisting of two machines, it is more complicated for installations in which there are more than two machines, because of the interaction between the forces generated by each machine. The development of a synchrophasing scheme, which has been applied to propeller aircraft, and is known as Propeller Signature Theory (PST) is discussed. It is shown both theoretically and experimentally, that this is an efficient way of controlling the phase of multiple machines. It is also shown that synchrophasing is a worthwhile vibration control technique, which has the potential to suppress vibration transmitted to the host structure by up to 20 dB at certain frequencies. Although the principle of synchronisation has been demonstrated on a one-dimensional structure, it is believed that this captures the key features of the approach. However, it should be realised that the mode-shapes of a machinery raft may be more complex than that of a one-dimensional structure and this may need to be taken into account in a real application. © 2013 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)