89 resultados para Biological traits analysis
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Com o objetivo de estudar o efeito da restrição alimentar sobre as características de carcaça de caprinos leiteiros, realizou-se um experimento utilizando 27 cabritos machos Saanen distribuídos nos tratamentos 0 (alimentação à vontade), 30 ou 60% de restrição. Os animais apresentavam 5 kg de PV inicial e foram abatidos quando atingiram 20 kg de PV. Foram avaliados os rendimentos comercial e biológico, os cortes comerciais, a composição tecidual da perna, a área de olho-de-lombo (AOL) e a compacidade da carcaça. Utilizaram-se o delineamento inteiramente ao acaso e a análise de regressão em função da restrição alimentar. A restrição alimentar provocou redução do peso da carcaça e dos cortes comerciais, aumento da proporção do pescoço e diminuição da proporção do lombo. A proporção de ossos aumentou e a do tecido muscular e da gordura total diminuiu com o aumento da restrição. A proporção de gordura subcutânea diminuiu com o aumento da restrição alimentar. A área de olho-de-lombo (AOL) e a compacidade da carcaça foram afetadas pela restrição alimentar, mas ambas as medidas podem ser utilizadas para predizer a proporção de músculo da carcaça. O tratamento com 30% de restrição alimentar não prejudica a qualidade da carcaça de cabritos leiteiros.
Resumo:
This study evaluated the use of different probiotics, prebiotics and symbiotics on the quality of carcasses and meat of broiler chickens. One hundred and eight day-old Cobb male broilers were used (n=108) in a completely randomized design according to a 3x3 factorial, with 3 probiotics in the diet (no probiotics, probiotics 1, probiotics 2) and 3 prebiotics in the diet (no prebiotics, prebiotics 1, prebiotics 2). There were nine treatments with 4 replicates and 3 birds per replicate. The results showed that the carcass and cut yields, color (L* - lightness, a* - redness, and b* - yellowness), pH, cooking losses, shearing force and sensory analysis were not affected by the use of different growth promoters at 42 days of age. It was concluded that growth promoters supplemented to the diet did not affect the studied quantitative and qualitative parameters of the carcass and breast meat of broiler chickens.
Resumo:
Growth curves models provide a visual assessment of growth as a function of time, and prediction body weight at a specific age. This study aimed at estimating tinamous growth curve using different models, and at verifying their goodness of fit. A total number 11,639 weight records from 411 birds, being 6,671 from females and 3,095 from males, was analyzed. The highest estimates of a parameter were obtained using Brody (BD), von Bertalanffy (VB), Gompertz (GP,) and Logistic function (LG). Adult females were 5.7% heavier than males. The highest estimates of b parameter were obtained in the LG, GP, BID, and VB models. The estimated k parameter values in decreasing order were obtained in LG, GP, VB, and BID models. The correlation between the parameters a and k showed heavier birds are less precocious than the lighter. The estimates of intercept, linear regression coefficient, quadratic regression coefficient, and differences between quadratic coefficient of functions and estimated ties of quadratic-quadratic-quadratic segmented polynomials (QQQSP) were: 31.1732 +/- 2.41339; 3.07898 +/- 0.13287; 0.02689 +/- 0.00152; -0.05566 +/- 0.00193; 0.02349 +/- 0.00107, and 57 and 145 days, respectively. The estimated predicted mean error values (PME) of VB, GP, BID, LG, and QQQSP models were, respectively, 0.8353; 0.01715; -0.6939; -2.2453; and -0.7544%. The coefficient of determination (RI) and least square error values (MS) showed similar results. In conclusion, the VB and the QQQSP models adequately described tinamous growth. The best model to describe tinamous growth was the Gompertz model, because it presented the highest R-2 values, easiness of convergence, lower PME, and the easiness of parameter biological interpretation.
Resumo:
Data comprising 53,181 calving records were analyzed to estimate the genetic correlation between days to calving (DC), and days to first calving (DFC), and the following traits: scrotal circumference (SC), age at first calving (AFC), and weight adjusted for 550 d of age (W550) in a Nelore herd. (Co)variance components were estimated using the REML method fitting bivariate animal models. The fixed effects considered for DC were contemporary group, month of last calving, and age at breeding season (linear and quadratic effects). Contemporary groups were composed by herd, year, season, and management group at birth; herd and management group at weaning; herd, season, and management group at mating; and sex of calf and mating type (multiple sires, single sire, or AI). In DFC analysis, the same fixed effects were considered excluding the month of last calving. For DC, a repeatability animal model was applied. Noncalvers were not considered in analyses because an attempt to include them, attributing a penalty, did not improve the identification of genetic differences between animals. Heritability estimates ranged from 0.04 to 0.06 for DC, from 0.06 to 0.13 for DFC, from 0.42 to 0.44 for SC, from 0.06 to 0.08 for AFC, and was 0.30 for W550. The genetic correlation estimated between DC and SC was low and negative (-0.10), between DC and AFC was high and positive (0.76), and between DC and W550 was almost null (0.07). Similar results were found for genetic correlation estimates between DFC and SC (-0.14), AFC (0.94), and W550 (-0.02). The genetic correlation estimates indicate that the use of DC in the selection of beef cattle may promote favorable correlated responses to age at first mating and, consequently, higher gains in sexual precocity can be expected.
Resumo:
The objective of this study was to evaluate the use of probit and logit link functions for the genetic evaluation of early pregnancy using simulated data. The following simulation/analysis structures were constructed: logit/logit, logit/probit, probit/logit, and probit/probit. The percentages of precocious females were 5, 10, 15, 20, 25 and 30% and were adjusted based on a change in the mean of the latent variable. The parametric heritability (h²) was 0.40. Simulation and genetic evaluation were implemented in the R software. Heritability estimates (ĥ²) were compared with h² using the mean squared error. Pearson correlations between predicted and true breeding values and the percentage of coincidence between true and predicted ranking, considering the 10% of bulls with the highest breeding values (TOP10) were calculated. The mean ĥ² values were under- and overestimated for all percentages of precocious females when logit/probit and probit/logit models used. In addition, the mean squared errors of these models were high when compared with those obtained with the probit/probit and logit/logit models. Considering ĥ², probit/probit and logit/logit were also superior to logit/probit and probit/logit, providing values close to the parametric heritability. Logit/probit and probit/logit presented low Pearson correlations, whereas the correlations obtained with probit/probit and logit/logit ranged from moderate to high. With respect to the TOP10 bulls, logit/probit and probit/logit presented much lower percentages than probit/probit and logit/logit. The genetic parameter estimates and predictions of breeding values of the animals obtained with the logit/logit and probit/probit models were similar. In contrast, the results obtained with probit/logit and logit/probit were not satisfactory. There is need to compare the estimation and prediction ability of logit and probit link functions.
Resumo:
The objective of this study was to evaluate the possible use of biometric testicular traits as selection criteria for young Nellore bulls using Bayesian inference to estimate heritability coefficients and genetic correlations. Multitrait analysis was performed including 17,211 records of scrotal circumference obtained during andrological assessment (SCAND) and 15,313 records of testicular volume and shape. In addition, 50,809 records of scrotal circumference at 18 mo (SC18), used as an anchor trait, were analyzed. The (co) variance components and breeding values were estimated by Gibbs sampling using the Gibbs2F90 program under an animal model that included contemporary groups as fixed effects, age of the animal as a linear covariate, and direct additive genetic effects as random effects. Heritabilities of 0.42, 0.43, 0.31, 0.20, 0.04, 0.16, 0.15, and 0.10 were obtained for SC18, SCAND, testicular volume, testicular shape, minor defects, major defects, total defects, and satisfactory andrological evaluation, respectively. The genetic correlations between SC18 and the other traits were 0.84 (SCAND), 0.75 (testicular shape), 0.44 (testicular volume), -0.23 (minor defects), -0.16 (major defects), -0.24 (total defects), and 0.56 (satisfactory andrological evaluation). Genetic correlations of 0.94 and 0.52 were obtained between SCAND and testicular volume and shape, respectively, and of 0.52 between testicular volume and testicular shape. In addition to favorable genetic parameter estimates, SC18 was found to be the most advantageous testicular trait due to its easy measurement before andrological assessment of the animals, even though the utilization of biometric testicular traits as selection criteria was also found to be possible. In conclusion, SC18 and biometric testicular traits can be adopted as a selection criterion to improve the fertility of young Nellore bulls.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Carcass and meat quality traits of thirty-six feedlot beef heifers from different genetic groups (GG) fed at two concentrate levels (CL) were evaluated using 12- Nellore (NE), 12 - 1/2Angus x 1/2Nellore (AN) and 12 - 1/2Simmental x 1/2Nellore (SN) animals. Six heifers of each GG were randomly assigned into one of two treatments: concentrate at 0.8% or 1.2% of body weight (BW). Heifers fed concentrate at 0.8% of BW had greater (P<0.05) dressing percentage. None of the proximate analysis components of the beef were affected (P>0.05) by either CL or GG. Heifers from the AN group had higher (P<0.05) carcass weights, 12th rib fat thickness and lower dressing percentage (P<0.05) compared to the other groups. NE heifers had greater WBSF values (P<0.05) than the other genetic groups. Data suggest that the concentrate level can be reduced without compromising meat quality traits. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of the present study was to investigate the effect of data structure on estimated genetic parameters and predicted breeding values of direct and maternal genetic effects for weaning weight (WW) and weight gain from birth to weaning (BWG), including or not the genetic covariance between direct and maternal effects. Records of 97,490 Nellore animals born between 1993 and 2006, from the Jacarezinho cattle raising farm, were used. Two different data sets were analyzed: DI_all, which included all available progenies of dams without their own performance; DII_all, which included DI_all + 20% of recorded progenies with maternal phenotypes. Two subsets were obtained from each data set (DI_all and DII_all): DI_1 and DII_1, which included only dams with three or fewer progenies; DI_5 and DII_5, which included only dams with five or more progenies. (Co)variance components and heritabilities were estimated by Bayesian inference through Gibbs sampling using univariate animal models. In general, for the population and traits studied, the proportion of dams with known phenotypic information and the number of progenies per dam influenced direct and maternal heritabilities, as well as the contribution of maternal permanent environmental variance to phenotypic variance. Only small differences were observed in the genetic and environmental parameters when the genetic covariance between direct and maternal effects was set to zero in the data sets studied. Thus, the inclusion or not of the genetic covariance between direct and maternal effects had little effect on the ranking of animals according to their breeding values for WW and BWG. Accurate estimation of genetic correlations between direct and maternal genetic effects depends on the data structure. Thus, this covariance should be set to zero in Nellore data sets in which the proportion of dams with phenotypic information is low, the number of progenies per dam is small, and pedigree relationships are poorly known. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)