105 resultados para Bauru Aquifer System


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main purpose of this work is to evaluate the chemical composition of the groundwaters from Guarani Aquifer System and Serra Geral Aquifer System in the Rio Pardo basin, located at the southwestern of São Paulo state. To the hydrochemical characterization, physicalchemical analyses from 32 sampled wells were used. These results were plotted in Piper diagrams allowing the classification of groundwater as calcium or calcium-magnesium bicarbonate type and sodium bicarbonate type for both aquifer systems. Distribution of hydrochemical facies over the study area was obtained using Stiff diagrams. The groundwater can be classified, representing in this sequence its hydrochemical evolution. The recognized mechanisms responsible for groundwater evolution are dissolution of minerals magnesium, such as olivine, present in the basalt, dissolution of feldspars and removal of the carbonate cement of the sandstones mineral framework. Ionic exchange may represent an important processes in the groundwater evolution, responsible for the increase in the sodium concentration and decrease of calcium

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Pirambóia Formation is a lithostratigraphic unit of the Paraná Basin, positioned between the Corumbataí (lower) and Botucatu (upper) Formations on the eastern edge of the basin. This unit is focused by many studies due to its great importance as an essential component in the Guarani Aquifer System (SAG) and the petroleum system “Irati-Pirambóia”, as excellent reservoirs. The Pirambóia Formation is historically the subject of several controversies on issues like age, contact relationships with the upper unit and depositional paleoenvironment. Despite these aspects, the Pirambóia Formation is commonly taken to be of Triassic age and is considered a product of wet aeolian systems, with plenty of wet interdunes and subordinate fluvial facies. In this work, by using techniques such as facies analysis, depositional architecture and facies association, facies of this unit were characterized and their depositional paleoenvironment was inferred particularly in Jundu Mining, region of Descalvado in northeastern São Paulo. Techniques such as grain size and petrographic analyses, aimed to characterize this unit as a potential reservoir rock. Five facies were described for the Pirambóia Formation in the studied region: St, Sh, Sm, Sr and Gt facies, generated by sedimentary processes of the bottom load type, mostly under low flow regime (with exception for the Sh facies, which is formed by upper flow regime processes). In addition to that, four facies associations were recognized from the architectural elements, primarily contained within the main channel: complex channel bars, composed by foreset macroforms (FM), sandy bedforms (SB) and gravel bars and bedforms (GB); flood deposits, constituted by laminated sand sheets (LS); deposits of hyperconcentrated flows and eolian deposits. It was interpreted that the Pirambóia Formation in Descalvado (SP) is the record of the sedimentation of braided rivers, with dunes and interdunes deposits...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Urucuia Aquifer System represents a strategic water source in western Bahia. Its baseflow is responsible for the flow rate of the main tributaries of São Francisco river left bank in the dry season, including the Rio Grande, its main tributary in Bahia state. This river has a hydrological regime heavily affected by groundwater and is located in a region with conflicts about water resources. The aquifers geology is constituted by neocretacious sandstones of Urucuia Group subdivided in Posse Formation and Serra das Araras Formation. The embasement is formed by neoproterozoic rocks of Bambuí Group. This work focuses on an important tool application, the mathematical model, whose function is represent approximately and suitably the reality so that can assist in different scenarios simulations and make predictions. Many studies developed in this basin provided the conceptual model basis including a full free aquifer, lithological and hydraulical homogeneity in entire basin, null flux at plateau borders and aquifer base. The finite element method is the numerical method used and FEFLOW the computational algorithm. The simulated area was discretized in a single layer with 27.357,6 km² (314.432 elements and 320.452 nodes) totaling a 4.249,89 km³ volume. Were utilized 21 observation wells from CERB to calibrate the model. The terrain topography was obtained by SRTM data and the impermeable base was generated by interpolation of descriptive profiles from wells and electric vertical drilling from previous studies. Works in this area obtained mean recharge rates varying approximately from 20% to 25% of average precipitation, thus the values of model recharge zones varying in this range. Were distributed 4 hydraulic conductivity zones: (K1) west zone with K=6x10-5 m/s; (K2) center-east zone with K=3x10-4 m/s; (K3) far east zone with K=5x10-4 m/s; e (K4) east-north zone with K=1x10-5 m/s. Thereby was incorporated to the final conceptual model...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The term model refers to any representation of a real system. The use of models in Hydrogeology can be valuable predictive tools for management of groundwater resources. The numeric models of groundwater flow, object of this study, consist on a set of differential equations that describe the water flow in the porous medium. In this context, numeric simulations were made for a sub-basin located at Cara Preta farm – Santa Rita do Passa Quatro – SP. The aquifer at the local is composed by rocks of Pirambóia Formation, which is part of Guarani Aquifer System. It was developed a conceptual model from previous studies in the area, and from that, simulations were made through the software Visual Modflow®. The conceptual model established previously was considered consistent through the results of simulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The growing interest in the use of groundwater resources is directly related to the economic advantages that the groundwater exploitation offers when compared to surface waters. This happens especially in large urban centers, such as the city of Americana / SP, where the rivers are increasingly contaminated by household and industrial waste. Therefore, this study aimed to characterize the Tubarão Aquifer System, in the city of Americana, to identify and evaluate the spatial distribution of different hydrogeochemical facies as well as understand the rock-fluid interaction through the construction of a conceptual hydrogeochemical model. This study was made based on the recognition of the possible chemical reactions that print the chemical characteristics of groundwater in the area. To do the job, there were two water sampling campaigns of all deep wells used by the City of Americana public water supply. From the results of hydrochemical, classification of water was made by Piper and Stiff diagrams as well as geostatistical data using cluster analysis of principal components. Based on information from the profiles obtained from the survey SIAGAS as well as in geological profiles provided by the city of Americana, we sought to detail the subsurface geology of the Subgroup Itararé in the city of Americana. The results obtained allowed the identification of three hydrochemical types in the study area: Bicarbonated calcium-sodium (1), bicarbonate sodium (2) and sodium chloride (3). The waters have bicarbonate alkaline pH to alkaline and can be considered weakly saline, with electrical conductivity values of around 161 mS / cm. Samples classified as sodium bicarbonate average of 174.99 mS / cm. The pH values ranging from 6.74 to 7.99, averaging 7.52. For the group of waters classified as sodium chloride, conductivity average is 164.32 mS / cm and pH values ranging... (Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The geophysical methods may be employed in aquifer system studies, as determination of groundwater level, soil/rock contact, beyond estimative of the aquifer thickness horizon. The geoeletric methods are particularly relevant in evaluations of the oilfields systems, due to directs relations between porosity and electrical resistivity, which allow inferences about oil and gas production. The indirect estimative of the productions in free aquifers system is something complex before of the diverse variables responsible for factors or physical phenomena, as clays minerals, which conditioned the physical parameters by electric geophysical methods. This paper present analyzed correlation among electrical resistivity, chargeability and direct measure flow in shallow wells, for determination of statistical relationships between parameters and evaluation of the geological constraints evolved. The study count with the 23 shallow wells located in free aquifer, constituted by alteration materials of the granites localized in Caçapava do Sul (RS). The geophysical data are acquired by vertical electric sounding in Schlumberger array. The correlations between electrical resistivity and flow, chargeability and flow, thickness of the soil/saprolite and flow indicated relationships between physical and hydrogeologic parameters, with variations conditioned by factors as porosity, permeability, besides intrinsic geological heterogeneities such soil variable thickness and rock fragments with several alteration degrees.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The numeric simulation is an important tool applied in understanding the dynamics of groundwater flow. In a hydrogeological model the processes responsible for groundwater flow are described by numerical formulations that allow the simplification, representation and understanding of the dynamics of the Aquifer System. In this work, a steady state groundwater flow simulation of Urucuia Aquifer System (UAS) part of the Corrente river basin was conducted, using the finite element method through software FEFLOW, to understand the dynamics of groundwater flow and quantify the hydrologic balance. The aquifer system Urucuia lodges in the São Francisco hydrogeological province and corresponds to a set of interconnected aquifers that occur in rocks from Urucuia group in the Urucuia sub-basin described by Campos e Dardenne (1997). The system is a porous media one, in a shape of a thick table mountain, consisting essentially of sandstones. The Corrente river basin is located in UAS in Western State of Bahia and it's one of the main units to maintaining permanent flow (Q95) and average natural flow of the São Francisco river. The simulation performed in this work obtained the following results for the modelled region: horizontal hydraulic conductivity of 3 x 10-4 m/s and vertical one 6 x 10-5 m/s; maximum recharge of 345 mm and minimum of 85 mm/a. It was concluded that: (1) regional groundwater flow has eastbound; with an exception of the extreme northeast portion, where the flow has opposite direction; (2) there are smaller water side dividers with an approximate direction EW, that guide the flow of water to the drainage that cut the aquifer; and (3) the UAS at Corrente river basin can be understood as a free regional aquifer system, isotropic and homogeneous. Regionally, the small lithological variations present in the Urucuia group can be neglected and do not exhibit significant influences on the dynamics of ground water flow

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Geociências e Meio Ambiente - IGCE