79 resultados para Background Substitution
Resumo:
We review a formalism of superstring quantization with manifest six-dimensional spacetime supersymmetry, and apply it to AdS3 × S3 backgrounds with Ramond-Ramond flux. The resulting description is a conformal field theory based on a sigma model whose target space is a certain supergroup SU′(2|2).
Resumo:
A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Neutrinos mediate long range forces among macroscopic bodies in a vacuum. When the bodies are placed in the neutrino cosmic background, these forces are modified. Indeed, at distances long compared to the scale T -1, the relic neutrinos completely screen off the two-neutrino exchange force, whereas for small distances the interaction remains unaffected. ©2000 The American Physical Society.
Resumo:
A method has been developed for the direct and simultaneous determination of As, Cu, Mn, Sb, and Se in drinking water by electrothermal atomic absorption spectrometry (ETAAS) using a transversely heated graphite tube atomizer (THGA) with longitudinal Zeeman-effect background correction. The thermal behavior of analytes during the pyrolysis and atomization stages was investigated in 0.028 mol L-1 HNO3, 0.14 mol L-1 HNO3 and 1 + 1 (v/v) diluted water using mixtures of Pd(NO3)2 + Mg(NO3)2 as the chemical modifier. With 5 μg Pd + 3 μg Mg as the modifier, the pyrolysis and atomization temperatures of the heating program of the atomizer were fixed at 1400°C and 2100°C, respectively, and 20 μL of the water sample (sample + 0.28 mol L-1 HNO3, 1 + 1, v/v), dispensed into the graphite tube, analytical curves were established ranging from 5.00 -50.0 μg L-1 for As, Sb, Se; 10.0 - 100 μg L-1 for Cu; and 20.0 - 200 μg L-1 for Mn. The characteristic masses were around 39 pg As, 17 pg Cu, 60 pg Mn, 43 pg Sb, and 45 pg Se, and the lifetime of the tube was around 500 firings. The limits of detection (LOD) based on integrated absorbance (0.7 μg L-1 As, 0.2 μg L-1 Cu, 0.6 μg L-1 Mn, 0.3 μg L-1 Sb, 0.9 μg L-1 Se) exceeded the requirements of the Brazilian Food Regulations (decree # 310-ANVS from the Health Department), which established the maximum permissible level for As, Cu, Mn, Sb, and Se at 50 μg L-1, 1000 μg L-1, 2000 μg L-1, 5 μg L-1, and 50 μg L-1, respectively. The relative standard deviations (n = 12) were typically < 5.3% for As, < 0.5% for Cu, < 2.1% for Mn, < 11.7% for Sb, and < 9.2% for Se. The recoveries of As, Cu, Mn, Sb, and Se added to the mineral water samples varied from 102-111%, 91-107%, 92-109%, 89-97%, and 101-109%, respectively. Accuracy for the determination of As, Cu, Mn, Sb, and Se was checked using standard reference materials NIST SRM 1640 - Trace Elements in Natural Water, NIST SRM 1643d - Trace Elements in Water, and 10 mineral water samples. A paired t-test showed that the results were in agreement with the certified values of the standard reference materials at the 95% confidence level.
Resumo:
A quantizable worldsheet action is constructed for the superstring in a super-symmetric plane wave background with Ramond-Ramond flux. The action is manifestly invariant under all isometries of the background and is an exact worldsheet conformal field theory. © SISSA/ISAS 2002.
Resumo:
It is proven that the pure spinor superstring in an AdS5 × S5 background remains conformally invariant at one loop level in the sigma model perturbation theory. © SISSA/ISAS 2003.
Resumo:
Motivated by Ooguri and Vafa, we study superstrings in flat ℝ4 in a constant self-dual graviphoton background. The supergravity equations of motion are satisfied in this background which deforms the M = 2 d = 4 flat space super-Poincaré algebra to another algebra with eight supercharges. A D-brane in this space preserves a quarter of the supercharges; i.e. N = 1/2 supersymmetry is realized linearly, and the remaining N = 3/2 supersymmetry is realized nonlinearly. The theory on the brane can be described as a theory in noncommutative superspace in which the chiral fermionic coordinates θα of N = 1 d = 4 superspace are not Grassman variables but satisfy a Clifford algebra. © SISSA/ISAS 2003.
Resumo:
It is shown that the pure spinor formulation of the heterotic superstring in a generic gravitational and super Yang-Mills background has vanishing one-loop beta functions. © SISSA/ISAS 2004.
Resumo:
Objective: The objective of the present investigation was to assess the histological effects of different wavelengths and intensities on the healing process of cutaneous wounds. Background Data: Tissue repair is a dynamic interactive process which involves mediators, cells and extra-cellular matrix. Several reports on the use of laser therapy have shown that the healing process is positively affected when the correct parameters are used. Methods: Eighteen standardized wounds were surgically created on the dorsum of male and female Wistar rats, which were subsequently divided into two experimental groups according to wavelength used λ.670 or λ685 nm) for lasertherapy (LLLT). Each group was divided into three subgroups of three animals according to the intensity of the applied irradiation (2,15, or 25 mW). Twelve animals were used as entreated controls and were not irradiated. The irradiation was carried out during seven consecutive days. The animals were sacrificed eight days after surgery. The specimens were removed, kept in 4% formaldehyde for 24 h, routinely prepared to wax, stained with H&E, and analyzed under light microscopy. Results: For both groups, light microscopy showed a substitution repair process; however, when LLLT was used, a positive biomodulatory effect was detectable, chiefly associated with shorter wavelength and low intensity. Conclusions: The results of the present study indicate that LLLT improved cutaneous wound repair and that the effect is a result of an inversely proportional relationship between wavelength and intensity, with treatment more effective when combining higher intensity with short wavelength or lower intensity with higher wavelength.
Resumo:
The power flow problem, in transmission networks, has been well solved, for most cases, using Newton-Raphson method (NR) and its decoupled versions. Generally speaking, the solution of a non-linear system of equations refers to two methods: NR and Successive Substitution. The proposal of this paper is to evaluate the potential of the Substitution-Newton-Raphson Method (SNR), which combines both methods, on the solution of the power flow problem. Simulations were performed using a two-bus test network in order to observe the characteristics of these methods. It was verified that the NR is faster than SNR, in terms of convergence, considering non-stressed scenarios. For those cases where the power flow in the network is closed to the limits (stressed system), the SNR converges faster. This paper presents the power flow formulation of the SNR and describes its potential for its application in special cases such as stressed scenarios. © 2006 IEEE.
Resumo:
We compute the one-loop beta functions for the Type II superstring using the pure spinor formalism in a generic supergravity background. It is known that the classical pure spinor BRST symmetry puts the background fields on-shell. In this paper we show that the one-loop beta functions vanish as a consequence of the classical BRST symmetry of the action. © SISSA 2007.
Resumo:
In this work the color dependence of resin composites with the background color was evaluated. The objective was to measure since what thickness the color of the sample stops being influenced by the color of the background over which the resin is placed and the methodology used in experiment was based in analyzing the contrast of digital images of the sample over a black background. The results shown that since 0.8 mm the images contrast becomes almost constant; it prove that since this thickness the color of resin composite depends on the optical resin properties only. The experiment was repeated under three conditions of luminosity to evaluate the influence of it on the image contrast and the results obtained were identical.
Resumo:
The nonrelativistic problem of a particle immersed in a triangular potential well, set forth by N. A. Rao and B. A. Kagali, is revised. It is shown that these researchers misunderstood the full meaning of the potential and obtained a wrong quantization condition. By exploring the space inversion symmetry, this work presents the correct solution to this problem with potential applications in electronics in a simple and transparent way. © Electronic Journal of Theoretical Physics. All rights reserved.
Resumo:
Background. About 130 million people are infected with the hepatitis C virus (HCV) worldwide, but effective treatment options are not yet available. One of the most promising targets for antiviral therapy is nonstructural protein 3 (NS3). To identify possible changes in the structure of NS3 associated with virological sustained response or non-response of patients, a model was constructed for each helicase NS3 protein coding sequence. From this, the goal was to verify the interaction between helicases variants and their ligands. Findings. Evidence was found that the NS3 helicase portion of non-responder patients contained substitutions in its ATP and RNA binding sites. K210E substitution can cause an imbalance in the distribution of loads, leading to a decrease in the number of ligations between the essential amino acids required for the hydrolysis of ATP. W501R substitution causes an imbalance in the distribution of loads, leading and forcing the RNA to interact with the amino acid Thr269, but not preventing binding of ribavirin inhibitor. Conclusions. Useful information is provided on the genetic profiling of the HCV genotype 3, specifically the coding region of the NS3 protein, improving our understanding of the viral genome and the regions of its protein catalytic site. © 2010 Rahal et al; licensee BioMed Central Ltd.
Resumo:
We review the basic hypotheses which motivate the statistical framework used to analyze the cosmic microwave background, and how that framework can be enlarged as we relax those hypotheses. In particular, we try to separate as much as possible the questions of gaussianity, homogeneity, and isotropy from each other. We focus both on isotropic estimators of nongaussianity as well as statistically anisotropic estimators of gaussianity, giving particular emphasis on their signatures and the enhanced cosmic variances that become increasingly important as our putative Universe becomes less symmetric. After reviewing the formalism behind some simple model-independent tests, we discuss how these tests can be applied to CMBdata when searching for large-scale anomalies. Copyright © 2010 L. Raul Abramo and Thiago S. Pereira.