48 resultados para Analysis of electromyographic signal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Piezoelectric transducers are widely used in high-resolution positioning systems. This paper reports the experimental analysis of a novel piezoelectric flextensional actuator (PFA), which is designed by using the topology-optimization method through a low-cost homodyne Michelson interferometer. By applying the J(1) - J(4) method for signal demodulation, which provides a linear and direct measurement of dynamic optical phase shift independent of fading, the nanometric displacements of the PFA were determined. Linearity and frequency response of the PFA were evaluated up to 50 kHz. PFA calibration factor and amplification rate were determined for the PFA operating in the quasi-static regime. To confirm the observed frequencies of resonance, an impedance analyzer is also utilized to measure the magnitude and phase of the PFA admittance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patellofemoral pain syndrome (PFPS) is the most frequent complaint in orthopedic clinics; although, its etiology remains unclear [Bolgla, 2010; Felicio, 2011]. Trying to understand its causes has been used time analysis of electromyography (EMG), but this method shows controversies. The aim of this study was to apply a method of processing the EMG signal in the frequency domain of the vastus lateralis (VL) and vastus medialis (VM) muscles for the characterization of PFPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work focuses basically on the design and analysis of simple and low cost hardware systems efficiency for temperature measurement in agricultural area. The main objective is to prove quantitatively, through statistical data analysis, to what extent a simple hardware designed with inexpensive components can be used safely in the indoor temperature measurement in farm buildings, such as greenhouses, warehouse or silos. To verify the of simple hardware efficiency, its data were compared with data from measurements with a high performance LabVIEW platform. This work proved that a simple hardware based on a microcontroller and the LM35 sensor can perform well. It presented a good accuracy but a relatively low precision that can be improved when performed some consecutive signal sampling and then used its average value. Although there are many papers that explain these components, this work has the distinction of presenting a data analysis in numerical form and using high performance systems to ensure critical data comparison.