64 resultados para Affine homography
Resumo:
We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
We consider an integrable conformally invariant two-dimensional model associated to the affine Kac-Moody algebra sl3(ℂ). It possesses four scalar fields and six Dirac spinors. The theory does not possesses a local Lagrangian since the spinor equations of motion present interaction terms which are bilinear in the spinors. There exists a submodel presenting an equivalence between a U(1) vector current and a topological current, which leads to a confinement of the spinors inside the solitons. We calculate the one-soliton and two-soliton solutions using a procedure which is a hybrid of the dressing and Hirota methods. The soliton masses and time delays due to the soliton interactions are also calculated. We give a computer program to calculate the soliton solutions. © 2002 Published by Elsevier Science B.V.
Resumo:
Two distinct gauge potentials can have the same field strength, in which case they are said to be copies of each other. The consequences of this ambiguity for the general affine space A of gauge potentials are examined. Any two potentials are connected by a straight line in A, but a straight line going through two copies either contains no other copy or is entirely formed by copies. Copyright © 2005 Hindawi Publishing Corporation.
Resumo:
The purpose of our work is to extend the formulation of classical affine Toda Models in the presence of jump defects to pure fermionic Thirring model. As a first attempt we construct the Lagrangian of the Grassmanian Thirring model with jump defect (of Backlund type) and present its conserved modified momentum and energy expressions giving a first indication of its integra-bility. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
This paper deals with the problem of establishing stabilizing state-dependent switching laws in DC-DC converters operating at continuous conduction mode (CCM) and comparing their performance indexes. Firstly, the nature of the problem is defined, that is, the study of switched affine systems, which may not share a common equilibrium point. The concept of stability is, therefore, broadened. Then, the central theorem is proposed, from which a family of switching laws can be derived, namely the minimum law and the hold state law. Some of these are proved to stabilize the basic DC-DC converters and then, their performances are compared to another law, from a previous work, by simulation, where a great reduction in overshoot is obtained. © 2011 IEEE.
Resumo:
The Kaup-Newell (KN) hierarchy contains the derivative nonlinear Schrödinger equation (DNLSE) amongst others interesting and important nonlinear integrable equations. In this paper, a general higher grading affine algebraic construction of integrable hierarchies is proposed and the KN hierarchy is established in terms of an Ŝℓ2Kac-Moody algebra and principal gradation. In this form, our spectral problem is linear in the spectral parameter. The positive and negative flows are derived, showing that some interesting physical models arise from the same algebraic structure. For instance, the DNLSE is obtained as the second positive, while the Mikhailov model as the first negative flows. The equivalence between the latter and the massive Thirring model is also explicitly demonstrated. The algebraic dressing method is employed to construct soliton solutions in a systematic manner for all members of the hierarchy. Finally, the equivalence of the spectral problem introduced in this paper with the usual one, which is quadratic in the spectral parameter, is achieved by setting a particular automorphism of the affine algebra, which maps the homogeneous into principal gradation. © 2013 IOP Publishing Ltd.
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Vegetal) - IBRC
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
This paper presents the design of a high-speed coprocessor for Elliptic Curve Cryptography over binary Galois Field (ECC- GF(2m)). The purpose of our coprocessor is to accelerate the scalar multiplication performed over elliptic curve points represented by affine coordinates in polynomial basis. Our method consists of using elliptic curve parameters over GF(2163) in accordance with international security requirements to implement a bit-parallel coprocessor on field-programmable gate-array (FPGA). Our coprocessor performs modular inversion by using a process based on the Stein's algorithm. Results are presented and compared to results of other related works. We conclude that our coprocessor is suitable for comparing with any other ECC-hardware proposal, since its speed is comparable to projective coordinate designs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)