93 resultados para Addition polymerization.
Resumo:
Amidos e gomas são hidrocoloides frequentemente usados em sistemas alimentícios com a finalidade de fornecer textura, umidade e mobilidade de água. A interação amido-goma em sistemas alimentícios pode alterar o inchamento do grânulo de amido e as suas propriedades de gelatinização e reológicas. Neste trabalho, o efeito da adição de goma xantana (GX), carboximetilcelulose sódica (CMC) e carragena (CAR) nas concentrações de 0,15, 0,25, 0,35 e 0,45% (p/v) sobre as propriedades de pasta, térmicas e reológicas do amido de mandioca foi estudado. O Poder de inchamento (PI) e a Microscopia Eletrônica de Varredura (MEV) dos géis de amido também foram avaliados. Os resultados obtidos mostraram que a GX apresentou forte interação com o amido, penetrando entre os grânulos e provocando aumento das viscosidades de pasta, PI, G' e G, e redução da retrogradação do amido; CMCS aumentou as viscosidades de pasta, PI, G' e G das misturas, principalmente em função da sua maior capacidade de reter água, e não por causa da interação com o amido; CAR não modificou qualquer das propriedades do amido, porque não houve nenhuma interação entre essa goma e o amido de mandioca nas concentrações usadas.
Resumo:
A concentração inibitória mínima-MIC em 30 estirpes de Pseudomonas aeruginosa isoladas de mastite bovina foi avaliada utilizando o E-test padrão e o método modificado, pela adição de Tris-EDTA e DMSO. Os métodos modificados apresentaram redução significativa da MIC das estirpes utilizando a gentamicina, a ciprofloxacina e a norfloxacina.
Resumo:
Foram avaliadas, durante o processo de sinterização, as propriedades mecânicas de peças cerâmicas a base de argila com adição de rocha sedimentar. Foram preparados corpos de prova com 0, 20, 40, 60 e 80% em peso de rocha adicionada ao material argiloso. As peças foram sinterizadas nas temperaturas de 500, 800, 900, 1000, 1100 e 1200 °C e, posteriormente, submetidas à análise de difração de raios X e a ensaios tecnológicos Os resultados de difração de raios X mostram que a rocha sedimentar apresenta argilominerais micáceos enquanto o material argiloso possui a caulinita como fase principal. Técnicas de análises térmicas e difração de raios X das diferentes misturas mostram reações que indicam transformação (inversão do quartzo), decomposição (perda de hidróxidos) e formação de fase (mulita) durante o aquecimento das amostras. Os ensaios tecnológicos mostram que a adição da rocha sedimentar melhora algumas propriedades do material sinterizado, auxiliada pela presença de fundentes. Entretanto, a presença de quartzo na rocha dificulta a formação da fase mulita. A formação de novas fases e as transformações ocorridas no aquecimento e resfriamento das amostras ajuda explicar as propriedades tecnológicas dos materiais cerâmicos.
Resumo:
Due to their excellent aesthetics, photopolymers have been extensively used in several dentistry applications. However, several problems are reported, e.g. low mechanical and abrasion resistance, shrinkage during polymerization, etc. Properties of the final restorations are intrinsically related to the polymerization stage, which can be conveniently studied by photocalorimetry. In the present work the polymerization reaction and the filler content of different photocurable commercial dental methacrylate-based composites were studied by means of photocalorimetry and thermogravimetry, respectively. The results show that the values of curing rate, the heat of polymerization and the filler content vary significantly from one composite to another.
Resumo:
Superconducting BSCCO samples made by melt-texturing process were prepared with the addition of calcium zirconate and calcium silicate nanoparticles. Bi:2212 melt-textured composites prepared with I wt.% of either addition showed different behavior for the critical current density as a function of the applied field, indicating that for each additional compound the improvement can be associated to different enhancement mechanisms, such as the creation of pinning centers and the increase on the connectivity of the grains. The estimated pinning forces indicated higher values for the calcium compound containing samples. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Silica particles were obtained by addition of diluted soluble sodium silicate in sodium 1,2 bis (2-ethylhexyloxycarbonyl)-1-ethenesulfonate reverse microemulsions, in which aqueous phase was nitric acid solution and the water/surfactant ratio (W) was 5 or 10. Products, whether washed or not, were dried at 100 degrees C and suspended in different solvents: heptane, water, kerosene or pentane for making SEM measurements. Thermal treatments of washed silica samples were carried out at 900 degrees C and 1200 degrees C. Silica particles of sizes from 1 to 10 mu m were obtained at room temperature without changing their shape due to thermal treatment and crystallization. SEM micrographs show hollow particles suggesting that silica preferably polymerizes on microemulsion droplet interface where ionic strength of nitric acid aqueous solution is favourable for silica polymerization reaction. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The two-dimensional hybrid organic-inorganic materials Zn-2-Cr and Zn-2-Al-LDHs (Layered Double Hydroxides) containing 4-(1H-pyrrol-1yl)benzoate anions as the interlayer anions were synthesized by the co-precipitation method at constant pH followed by subsequent hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, ESR, TGA, and TEM. The basal spacing found by the X-ray diffraction technique is coincident with the formation of bilayers of the intercalated anions. Solid-state C-13 NMR and ESR data strongly suggest the partial in situ polymerization of the 4-(1H-pyrrol-1yl)benzoate anions during coprecipitation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Tellurium tetrachloride adds to alkynes via two pathways: a concerted syn addition, that yields Z-tri- and tetra-substituted alkenes or by an anti addition that yields E-alkenes. The mechanistic aspects of these divergent pathways have been reevaluated at the light of crystallographic data. The molecules, of the title compound, in the crystal, are associated in a helical fashion with a Te...Te pitch of 6.3492(6) angstrom. As it exhibits inhibitory activity for cathepsin B and in order to gain more insight of the inhibition mechanism, a docking study was undertaken providing insight on why organic telluranes are more efficient inhibitors than inorganic ones as AS-101. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of the addition of Cr and Nb on the microstructure and the electrochemical corrosion of the weldable, high-strength and stress corrosion cracking (SCC) resistant Al-5%Zn-1.67%Mg-0.23%Cu alloy (H) has been studied. Combined additions of the alloying elements, J (with Nb), L (with Cr) and O (with Cr and Nb) and different heat treatments, ST (cold-rolled), A (annealed), F (quenched), B (quenched and aged) and C (quenched in two steps and aged), to obtain different microstructures and hardness have been performed. To correlate the electrochemical corrosion with the microstructure of the specimens, corrosion potential (E(cor)) measurements in different chloride solutions were performed and optical microscopy, SEM, TEM and EDX were applied. In chloride solutions containing dissolved O-2 or H2O2, the present alloys were polarized up to the pitting attack. It was shown that the E(cor) measurements were very sensitive to the alloy composition and heat treatment, increasing in the order H < J < L < O < Al (for a given heat treatment) and F < A approximate to ST < B < C (for a given alloy). The MgZn2 precipitates of the annealed (A) and cold-rolled (ST) specimens were dissolved in chloride solutions containing oxidizing agents and pitting attack was shown to develop in the cavities where the precipitates were present. In the specimens B and C, the compositions of the precipitate free zones was found to be equal to that of the matrix solid solution and preferential intergranular attack was not evident, this being in agreement with their SCC resistance. The addition of Cr and Nb increased the pitting corrosion resistance. The effects of Cr and Nb were additive, that of Cr being predominant, either, in the E(cor) shift or in the increase in the pitting corrosion resistance.
Resumo:
Hybrid transparent and flexible siloxane-polypropyleneglycol (PPG) materials with covalent bonds between the inorganic (siloxane) and organic (polymeric) phases were prepared by sol-gel process. In order to improve the quality of the mechanical properties of these materials, different amounts of methyltriethoxysilane (MTES) were added to the initial sol. The effect of MTES addition on the structure of the composites was studied by Small-Angle X-Ray Scattering (SAXS) and Si-29 Nuclear Magnetic Resonance (Si-29 NMR). In absence of MTES, SAXS spectra exhibit a peak that is assigned to spatial correlation due to short range order between the siloxane clusters embedded in the polymeric phase. The experimental results indicate that, for low MTES concentrations ([MTES]/[O] less than or equal to 0.8, O: ether-type oxygen of PPG), the silicon species resulting from hydrolysis and condensation of MTES fill the open spaces between polymeric chains, interacting with the ether-type oxygens. For larger MTES content ([MTES]/[O] greater than or equal to 0.8), the number of free ether-type oxygen sites avalaible for reaction with such silicon species is not large enough. Consequently, a fraction of silicon species resulting from MTES addition graft to siloxane clusters formed by hydrolysis and condensation of the hybrid precursor. For all MTES concentrations the condensation degree of the siloxane phase, determined from Si-29 NMR spectroscopy, is high (> 69%), as expected under neutral pH synthesis conditions.
Resumo:
2,3-Bis(methylsulfanyl)norbomenobenzoquinone undergoes reaction with nitrogen, oxygen, sulfur or carbon nucleophiles to give the trisubstituted adducts containing the new substituent at the ring junction. Their configurations are assigned by H-1 NMR spectroscopy and NOE enhancement experiments. (C) 1997 Elsevier B.V. Ltd.
Resumo:
Water, compared with plasma at a pH of 7.4, is a weak acid. The addition of free water to a patient should have an acidifying effect (dilutional acidosis) and the removal of it, an alkalinizing effect (concentrational alkalosis). The specific effects of free water loss or gain in a relatively complex fluid such as plasma has, to the authors' knowledge, not been reported. This information would be useful in the interpretation of the effect of changes in free water in patients. Plasma samples from goats were either evaporated in a tonometer to 80% of baseline volume or hydrated by the addition of distilled water to 120% of baseline volume. The pH and partial pressure of carbon dioxide, sodium, potassium, ionized calcium, chloride, lactate, phosphorous, albumin, and total protein concentrations were measured. Actual base excess (ABE), standard bicarbonate, anion gap, strong ion difference, strong ion gap, unmeasured anions, and the effects of sodium, chloride, phosphate, and albumin changes on ABE were calculated. Most parameters changed 20% in proportion to the magnitude of dehydration or hydration. Bicarbonate concentration, however, increased only 11% in the evaporation trial and decreased only -2% in the dehydration trial. The evaporation trial was associated with a mild, but significant, metabolic alkalotic effect (ABE increased 3.2 mM/L), whereas the hydration trial was associated with a slight, insignificant metabolic acidotic effect (ABE decreased only 0.6 mM/L). The calculated free water ABE effect (change in sodium concentration) was offset by opposite changes in calculated chloride, lactate, phosphate, and albumin ABE effects.