50 resultados para Active ingredients


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several alloys have been used for prosthodontics restorations in the last years. These alloys have a number of metals that include gold, palladium, silver, nickel, cobalt, chromium and titanium and they are used in oral cavity undergo several corrosion. Corrosion can lead to poor esthetics, compromise of physical properties, or increased biological irritation. The objective of this study was evaluated corrosion resistance of two alloys Ni-Cr and Ni-Cr-Ti in three types of mouthwashes with different active ingredients: 0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride, 0.05% sodium fluoride + 0.03% triclosan (with fluor) and 0.12% chlorohexidine digluconate. The potentiodynamic curves were performed by means of an EG&G PAR 283 potentiostat/galvanostat. The counter electrode was a platinum wire and reference electrode was an Ag/AgCl, KCl saturated. Before each experiment, working electrodes were mechanically polished with 600 and 1200 grade papers, rinsed with distilled water and dried in air. All experiments were carried out at 37.0oC in conventional three-compartment double wall glass cell containing mouthwashes. The microstructures of two alloys were observed in optical microscopy. Analysis of curves showed that Ni-Cr alloy was less reactive in the presence of 0.12% chlorohexidine digluconate while Ni-Cr-Ti alloy was more sensitive for others two types of mouthwashes (0.5g/l cetylpyridinium chloride + 0.05% sodium fluoride  and 0.05% sodium fluoride + 0.03% triclosan). This occurred probably due presence of titanium in this alloy. Microstructural analysis reveals the presence of dendritic and eutectic microstructures for NiCr and Ni-Cr-Ti, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of pesticides to manage pest problems in agriculture has become a common practice around the world. Pesticides consist in chemical substances or biological agents that act preventing, destroying, repelling or mitigating the damage caused by pests in agriculture. In order to a successful treatment, the correct dosage of pesticide has to be applied for each kind of culture. In this context, this project aims to quantify the levels of the active ingredients Imidacloprid and Chlorpyrifos present in formulated technical products and compare with the reported in the ir commercial leaflets. The analyzes were performed by Ultra Performance Liquid Chromatography coupled to a photodiode array detector (CLUE-DAD). The identification of Imidacloprid and Chlorpyrifos in the samples was realized by comparison of the time of retention and UV spectre of those substances with the commercials patterns, resulting in a excellent method specificity of the method. In the scope of determination of active ingredients in formulated products, the method developed showed good sensitivity in the applied conditions, with suitables limits of detection (4,2.10-² mg L-¹ for Imidacloprid and 1,1.10-¹ mg L-¹ to Chlorpyrifos) and quantitation (1,4.10-¹ mg L-¹ and Imidacloprid 3,6.10-¹ mg L-¹ to Chlorpyrifos) for the concentrations found in matrices analyzed. Furthermore, good results were obtained to the method accuracy with coeficiente of variance values in the range of 0,6 to 0,7% for repeatability (intra-day) and 0,4 to 0,58% for intermediate precision (inter- day). The accuracy of the method was determined by recovery tests, the values were comprised in the range of 98 102%. According to the recommendations of the Associação Brasileira de Normas Técnicas, these values show good accuracy of the method. The concentrations obtained in the quantification of the active ingredients in formulated products showed values within permited by ABNT, 60.1% (w/v) ± 0.6%...

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In Brazil, the exploration and use of the Hevea brasiliensis Mull Arg. wood at the end of the latex production cycle from 30 to 35 years, is practically unknown. However, one of the most significant problems with its use relates to the high susceptibility of this species wood to the fungus Botryodiplodia theobromae attack, especially during the primary wood processing phase. The present study evaluated the efficacy of four chemicals to control juvenile and adult Hevea brasiliensis wood from the attack of the fungus stainer Botryodiplodia theobromae following the ASTM 4445 (2003) standard. The results showed that the active ingredients separately tested and evaluated in the laboratory; (Quinolinolato Copper - 8 and Carbendazim (T1); Tribromofenol 2-4-6 (T2); Extract-Based Vegetable Tannin (T3); Carbendazim and Prochloraz (T4)) do not totally prevent the contamination of Botryodiplodia theobromae in 5% level of significance

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of this study is based on the need to obtain simple and efficient in vitro models to predict the in vivo toxicity of cosmetics, aiming not to use animals as experimental model. Here, we proposed the use of HepG2 cells, which are widely applied to simulate the hepatic function of the human organism in vitro. This cell line was chose since recent studies have shown that the liver is potentially the most frequently targeted organ by cosmetic ingredients, and beyond that, considering the widely application of in vitro assays to test the cutaneous permeation of cosmetic products, including the assays applying modified Franz cells, this technique becomes indispensable. Three different cosmetic active substances were used, and the toxicity to HepG2 cells was assessed by the MTT method. The treatment with hyaluronic acid showed no toxicity to HepG2 cells. Treating the cells with P. guajava L. extract were verified that increasing the amount of the extract in the media, the cellular viability decreased, and finally, the treatment of alpha-lipoic acid showed a cytoprotective effect in relation to the treatment with propylene glycol. The study demonstrated the suitability in using HepG2 cells to assess the safety of cosmetic active substances, helping in the prediction of if the substance could be hepatotoxic if could reach the bloodstream