50 resultados para Acidic beverages
Resumo:
PurposeThe mechanical properties of acrylic resins used in intraoral prostheses may be altered by frequent exposure to liquids such as beverages and mouthwashes. This study aimed to evaluate the effect of thermocycling and liquid immersion on the hardness of four brands of acrylic resins commonly used in removable prostheses (Onda Cryl, QC-20, Classico, Lucitone).Materials and MethodsFor each brand of resin, seven specimens were immersed in each of six solutions (coffee, cola, red wine, Plax-Colgate, Listerine [LI], Oral B), and seven more were placed in artificial saliva (control). The hardness was tested using a microhardness tester before and after 5000 thermocycles and after 1, 3, 24, 48, and 96 hours of immersion. The results were analyzed using three-way repeated-measures ANOVA and Tukey's test (p < 0.05).ResultsThe hardness of the resins decreased following thermocycling and immersion in the solutions. Specimens immersed in cola and wine exhibited significant decreases in hardness after immersion for 96 hours, although the greatest significant decrease in hardness occurred in specimens immersed in LI. However, according to American Dental Association specification 12, the Knoop hardness of acrylic resins for intraoral prostheses should not be below 15. Thus, the median values of superficial hardness observed in most of the acrylic resins in this study are considered clinically acceptable.ConclusionsThe microhardness of polymers used for intraoral prostheses decreases following thermocycling. Among specimens immersed in beverages, those immersed in cola or wine experienced the greatest decrease in microhardness. Immersion of acrylic resins in LI significantly decreased the microhardness in relation to the initial value. Among the resins assessed, QC-20 exhibited the lowest initial hardness.
Resumo:
The colour stability of acrylic resin denture teeth in beverages was investigated. A spectrophotometer measured the colour (CIE-L*a*b* system) of all specimens after storage in distilled water for 24 h at 37°C (T0). Specimens were then immersed in various beverages. After 15 days (T1) and 30 days (T2), for each material, the mean ∆E values were calculated and compared by two-way ANOVA and Tukey intervals (α=0.05). In the ∆T0T1 period, specimens stored in red wine were significantly discoloured, compared to distilled water (P=0.003). There was no difference between immersion solutions in ∆ET0T2 (P=0.772) and in ∆ET1T2 (P=0.058), and no difference between materials in all immersion periods.
Resumo:
The aim of this study was to verify the effect of inulin and oligofructose on the physicochemical, microbiological and sensory characteristics of symbiotic dairy beverages. Four formulations were made: 1) a control (C); 2) a sample with added Lactobacillus paracasei (P); 3) a sample with added L. paracasei and inulin (PI); and 4) a sample with added L. paracasei and oligofructose (PO). The probiotic population, pH, and acidity of the products were evaluated once a week for 21 days while refrigerated (5 +/- 1 degrees C). Possible contaminating microorganisms (coliforms, E. coli, and Salmonella spp.) were investigated after three days of storage. Sensorial acceptance and purchase intention were evaluated seven days after manufacture. Dairy beverages presented with L. paracasei populations above 8.50 log CFU/mL during the whole storage period. Significantly (p<0.05) lower pH values were observed in P and PI, and higher acidity values were found in all formulations throughout storage. The dairy beverages were considered to be a promising matrix for the probiotic microorganism L. paracasei. The prebiotic additions (inulin and oligofructose) did not interfere with the overall acceptance and intention to purchase the beverages.
Resumo:
The electrochemical behaviour of N-R-4-cyanopyridinium (4-rcp) (R = methyl, decyl, dodecyl, or benzyl) coordinated to pentaammineruthenium(II) in CF3COOH-CF3COONa (μ = 0.1 M, pH 3) aqueous medium was studied by means of cyclic voltammetry and constant potential electrolysis. The electrochemical oxidation of the metallic centre (Ep ca 0.51 V/SCE) can be described as a reversible monoelectronic charge-transfer followed by an irreversible chemical reaction, which is the hydrolysis of N-R-4-cyanopyridiniumpentaammineruthenium(III) (A) to N-R-4-carboxamidepyridiniumruthenium (III) (B) with the kf1 values depending on the type of alkyl group. The E 1 2 values are not significantly influenced by the nature of the alkyl group. At more negative potential (ca -0.5 V/SCE), B undergoes an electrochemical reduction followed by an aquation reaction to produce aquopentaammineruthenium(II) and free N-R-4-carboxamidepyridinium. The amide was identified by comparison of its cyclic voltammogram and UV-vis spectrum with that of a sample prepared by chemical reaction. The results were also discussed by comparison with other systems, and show that nitrile-amide conversion catalysed by pentaammineruthenium(II) complexes is possible. © 1994.
Resumo:
An alcohol dehydrogenase (ADH) was purified from dry baker’s yeast. This is a key enzyme of the primary short-chain alcohol metabolism in many organisms. In the present study, the obtained enzymatic preparation of baker’s yeast, containing 2.7 U/mg of ADH, was used in the reactions. The purified extract of the ADH obtained from Fermix commercial dry yeast, presented the highest activity and purification factor when ammonium sulfate was added in the precipitation of protein, in the range 35-60% (w/v). The enzymatic preparation was maintained for 2 months in the lyophilized form at 4ºC (retention of 96.2% of activity) in the presence of 1 mmol/L of sodium azide, and it maintained 47% of activity for 30 days at 30°C in the presence of 15% PEG. The assays of ethanol (detection range 5 mM -150 mM or 2.3 x 10-4 – 6.91 x 10-3g/L) in different samples in alcoholic beverages, presented a maximum deviation of only 2.1%. Assays of recovery of the substrate (99.25%) added in the wine showed that the methodology is viable for this sample type. The standard curve and the analytic curve of this method meet the conditions of precision, sensitivity, simplicity, and low cost, required for a useable analytical method.