162 resultados para ACID PHOSPHATASE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A ocupação do cerrado para aumentar a produção agrícola tem gerado a degradação do solo e uma prática recomendada na revegetação dessas áreas é a introdução de espécies arbóreas. O objetivo do trabalho foi avaliar o crescimento (altura e massa fresca e seca de parte aérea), a atividade da fosfatase ácida foliar e colonização micorrízica de mudas de espécies arbóreas não nativas em solo de cerrado degradado. O trabalho foi desenvolvido em casa de vegetação em Ilha Solteira, empregando solo proveniente de uma área de cerrado degradado em processo de regeneração natural, localizada no município de Três Lagoas (MS). O solo, misturado com areia de rio (4:1), foi fumigado com brometo de metila e distribuído em sacos plásticos (2,5 L). Para o tratamento com inoculação de FMA, 100 g de solo inóculo (solo de área de cerrado preservado) foi depositado na superfície, logo após o transplante das mudas. Pelos resultados, Psidium guajava L. e Croton floribundus Spreng, seguidos por Tabebuia chrysotricha (Mart. ex DC) Standl) e Rapanea ferruginea (Ruiz et Pav) Mez., tiveram alta colonização radicular e foram altamente ou muito responsivas à micorrização, sugerindo seu potencial em projetos de revegetação no cerrado brasileiro ou no enriquecimento de áreas degradadas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl2, BaCl2, CuCl2, and ZnCl2. All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but,beta -glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degreesC for both activities. The enzymes were fully stable up to 1 h at 60 degreesC. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BACKGROUND. The present report was carried out to determine whether alcohol intake could induce prostate lesions.METHODS. We tested male rats for 300 days. Animals were divided into three groups: controls received only tap water as liquid diet; the chronic alcohol intake group received only ethanol solution in semivoluntary research; and the withdrawal group received the same treatment as chronic alcohol intake until 240 days, after which they reverted to drinking water.RESULTS. Chronic alcohol intake increased lipoperoxide concentrations and acid phosphatase activities. Cu-Zn superoxide dismutase (SOD) was decreased at 60 days, but approached controls values at 300 days following treatment. The serum increased alkaline phosphatase, and alanine transaminase activities reflected the chronic toxic effect of ethanol.CONCLUSIONS. Since SOD activity was unable to scavenge superoxide radical and lipoperoxide formation, we can conclude that superoxide is an important intermediate in prostate damage of chronic alcohol intake. (C) 1997 Wiley-Liss, Inc.
Resumo:
The harmful effects of nicotine on male genital system fertility have been reported in experimental and clinical studies. However, its effects on prostatic cells and glandular pathogenesis remain unclear. The aim of the present study was to analyse the histological, histochemical and ultrastructural alterations, in addition to stereology, of the ventral lobe of the prostate of rats, submitted to chronic nicotine administration, as well as to establish the relationship between these changes and prostate diseases. Twelve male Wistar rats (Rattus norvegicus) were divided into two experimental groups: group I (nicotine) and group II (control). Samples of the ventral prostate were collected, processed and submitted to histological analysis, acid phosphatase histochemistry and ultrastructural analysis by transmission and scanning electron microscopies. The results showed that in the nicotine group, the secretory epithelial cells of the ventral lobe of the prostate were atrophied, and prostatic intraepithelial neoplasia occurred and reduced the expression of acid phosphatase. The disorganisation of organelles involved in the glandular secretory process, accompanied by biomembrane destructuring, was also observed. In conclusion, nicotine causes drastic alterations in the secretory epithelium of the ventral prostate, compromising its function. Furthermore, nicotine also induces premalignant lesions in the prostate gland, thus representing a risk factor in the development of prostate diseases.
Resumo:
Oenocytes of adult workers and queens of Apis mellifera L. were studied in different ages or life stages, by means of morphometric and histologic techniques. In workers, the oenocytes were found in the head, near the mandibles and in the abdomen, immersed in the parietal fat body mainly below the sterna, close to the wax glands. In queens, two populations of oenocytes different in size and localization were found within the parietal and visceral fat body, respectively. The oenocytes of workers and queens show the presence of acid lipids and acid phosphatase. The role of these cells in the castes differences is discussed.
Resumo:
Background and Objective: Cyclosporine A is an immunosuppressive drug that is widely used in organ transplant patients as well as to treat a number of autoimmune conditions. Bone loss is reported as a significant side-effect of cyclosporine A use because this can result in serious morbidity of the patients. As we have shown that cyclosporine A-associated bone loss can also affect the alveolar bone, the purpose of this study was to evaluate the effect of the concomitant administration of alendronate on alveolar bone loss in a rat model.Material and Methods: Forty Wistar rats (10 per group) were given cyclosporine A (10 mg/kg, daily), alendronate (0.3 mg/kg, weekly), or both cyclosporine A and alendronate, for 60 d. The control group received daily injections of sterile saline. The expression of proteins associated with bone turnover, including osteocalcin, alkaline phosphatase and tartrate-resistant acid phosphatase (TRAP), and also the calcium levels, were evaluated in the serum. Analysis of the bone volume, alveolar bone surface, the number of osteoblasts per bone surface and the number of osteoclasts per bone surface around the lower first molars was also performed.Results: the results indicate that cyclosporine A treatment was associated with bone resorption, represented by a decrease in the bone volume, alveolar bone surface and the number of osteoblasts per bone surface and by an increase in the number of osteoclasts per bone surface and TRAP-5b. These effects were effectively counteracted by concomitant alendronate administration.Conclusion: It is concluded that concomitant administration of alendronate can prevent cyclosporine A-associated alveolar bone loss.
Resumo:
Midgut cells from the honey bee, Apis mellifera, and the stingless bees Scaptotrigona postica and Melipona quadrifasciata anthidioides were examined ultrastructurally and histochemically. Several types of protrusions were evident in the apical surface of the midgut cells. Large apical protrusions formed by the whole apical surface of the cell, whose content had a homogeneous cytoplasmic matrix devoid of organelles and with a different electron density from the subjacent cytoplasm. These protrusions can be cast out to the midgut lumen. A second type of large apical protrusion was produced between the cell microvilli, presenting many ribosomes and polyribosomes. In addition to these large protrusions two other kinds of small ones were observed. One type crowned the cell apex forming small spheres with irregular contours near the cells, and increasing in size further away. The other type was characterized by the microvilli swelling with an electron-lucent content. The Gomori acid phosphatase reaction was positive at the cell apex, in the pinched off protrusions and in the microvilli. These results are discussed in relation to the possible role of cell protrusions in secretory mechanisms.
Resumo:
Background: Bacterial constituents, such as Gram-negative derived lipopolysaccharide (LPS), can initiate inflammatory bone loss through induction of host-derived inflammatory cytokines. The aim of this study was to establish a model of aggressive inflammatory alveolar bone loss in rats using LPS derived from the periodontal pathogen Actinobacillus actinomycetemcomitans.Methods: Eighteen female Sprague-Dawley rats were divided into LPS test (N = 12) and saline control (N = 6) groups. All artimals received injections to the palatal molar gingiva three times per week for 8 weeks. At 8 weeks, linear and volumetric alveolar bone loss was measured by micro-computed tomography (mu CT). The prevalence of inflammatory infiltrate, proinflammatory cytokines, and osteoclasts was assessed from hematoxylin and eosin, immunohistochemical, or tartrate-resistant acid phosphatase (TRAP)-stained sections. Statistical analysis was performed.Results: A. actinomycetemcomitans LPS induced severe bone loss over 8 weeks, whereas control groups were unchanged. Linear and volumetric analysis of maxillae by mu CT indicated significant loss of bone with LPS, administration. Histologic examination revealed increased inflammatory infiltrate, significantly increased immunostaining for interleukin IL-6 and -1 beta and tumor necrosis factor-alpha, and more TRAP-positive osteoclasts in the LPS group compared to controls.Conclusion: Oral injections of LPS derived from the periodontal pathogen A. actinomycetemcomitans can induce severe alveolar bone loss and proinflammatory cytokine production in rats by 8 weeks.
Resumo:
The toxic effects of chronic ethanol ingestion were evaluated in male adult rats for 300 days. The animals were divided into three groups: the controls received only tap water as liquid diet; the chronic ethanol ingestion group received only ethanol solution (30%) in semivoluntary research; and the withdrawal group received the same treatment as chronic ethanol-treated rats until 240 days, after which they reverted to drinking water. Chronic ethanol ingestion induced increased lipoperoxide levels and acid phosphatase activities in seminal vesicles. Cu-Zn superoxide dismutase (SOD) decreased from its basal level 70.8 +/- 3.5 to 50.4 +/- 1.6 U/mg protein at 60 days of chronic ethanol ingestion. As changes in GSH-PX activity were observed in rats after chronic ethanol ingestion, while SOD activities were decreased in these animals, it is assumed that superoxide anion elicits lipoperoxide formation and induces cell damage before being converted to hydrogen peroxide by SOD. Ethanol withdrawal induced increased SOD activity and reduced seminar vesicle damage, indicating that the toxic effects were reversible, since increased SOD activity was adequate to scavenge superoxide radical formation. Superoxide radical is an important intermediate in the toxicity of chronic ethanol ingestion. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
Tacrolimus is used for transplant patients with refractory graft rejection and those with intolerance to cyclosporin (CsA), without the disfiguring adverse effects frequently attributed to CsA therapy. Since we have shown that CsA-associated bone loss can also affect alveolar bone, the purpose of this study was to evaluate the effects of conversion of monotherapy from CsA to tacrolimus on alveolar bone loss in rats. Groups of rats were treated with either CsA (10 mg/kg/day, s.c.), tacrolimus (I mg/kg/day, s.c.), or drug vehicle for 60 and 120 days, and an additional group received CsA for 60 days followed by conversion to tacrolimus for a further 60-day period. Bone-specific alkaline phosphatase (BALP), tartrate-resistent acid phosphatase (TRAP-5b), calcium (Ca2+), interleukin (IL)-1 beta, IL-6, and tumor necrosis factor alpha (TNF-alpha) concentrations were evaluated in the serum. Analyses of bone volume, bone surface, number of osteblasts, and osteoclasts were performed. Treatment with CsA for either 60 or 120 days was associated with bone resorption, represented by lower bone volume and increased number of osteoclasts; serum BALP, TRAP-5b, IL-1 beta, IL-6, and TNF-alpha were also higher in these animals. After conversion from CsA to tacrolimus, all the altered serum markers returned to control values in addition to a significant increase of bone volume and a lower number of osteoclasts. This study shows that conversion from CsA to tacrolimus therapy leads to a reversal of the CsA-induced bone loss, which can probably be mediated by downregulation of IL-1 beta, IL-6, and TNF-alpha production.