123 resultados para A1 noradrenergic neurons
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: We have applied here a model of chronic granulomatous inflammation to study the profile of mast cell activation and their expression of annexin-A1 in the nodular lesion.Materials: Granulomatous inflammation was induced by injection of croton oil and Freund's complete adjuvant (CO/FCA) into the dorsal air-pouches of mice. Skin tissue samples were collected from control group (24 h time-point; i.e. before disease development) and 7, 14, 21, 28 and 42 days post-CO/FCA treatment.Results: Histopathological analyses revealed an on-going inflammation characterized by an increased number of activated mast cells at sites of the chronic inflammatory reaction in all experimental groups. Immunohistochemical analysis showed skin mast cells highly immunoreactive for annexin-A1, both at an initial (day 7) and a delayed (day 28) phase of the inflammatory reaction.Conclusions: The observed time-dependent modulation of mast cell activation, during the granulomatous injury, indicates that multiple pathways centred on annexin-A1 might become activated at different stages of this chronic inflammatory response, including the delayed and pro-resolving phase.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The mode of action of annexin A1 (ANXA1) is poorly understood. By using rapid subtraction hybridization we studied the effects of human recombinant ANXA1 and the N-terminal ANXA1 peptide on gene expression in a human larynx cell line. Three genes showed strong downregulation after treatment with ANXA1. In contrast, expression of CCR10, a seven transmembrane G-protein coupled receptor for chemokine CCL27 involved in mucosal immunity, was increased. Moreover the reduction in CCR10 expression induced by ANXA1 gene deletion was rescued by intravenous treatment with low doses of ANXA1. These findings provide new evidence that ANXA1 modulates gene expression. (c) 2006 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Avaliaram-se quantitativa, morfométrica e qualitativamente os neurônios atriais da faixa intercaval de cães com cardiomiopatia dilatada (CMD). Os neurônios dos gânglios nervosos de cães com CMD eram maiores que os dos cães controle. A histopatologia do miocárdio ventricular e dos neurônios ganglionares confirmou a CMD e demonstrou evidente processo degenerativo neuronal ganglionar. Cães com CMD em fase crônica apresentavam cardioneuropatia secundária, provavelmente pela privação da inervação parassimpática cardíaca.
Resumo:
The effect of tubero-infundibular dopaminergic neurons (TIDA) on the release of prolactin (PRL) and alpha-melanocyte stimulating hormone (alpha-MSH) was studied in median eminence-lesioned (MEL) male rats (N = 6-28). Plasma PRL and alpha-MSH levels were significantly elevated 2 (86.1 +/- 19.8 and 505.1 +/- 19.1 ng/ml), 4 (278.7 +/- 15.5 and 487.4 +/- 125.1 ng/ml), 7 (116.2 +/- 16.2 and 495.8 +/- 62.6 ng/ml) and 14 (247.3 +/- 26.1 and 448.4 +/- 63.8 ng/ml) days after MEL when compared to sham-operated control animals (55.5 +/- 13.4 and 56.2 +/- 6.1 ng/ml, respectively). MEL altered plasma PRL and alpha-MSH levels in a differential manner, with a 1.5-to 5.0-fold increase in PRL and an 8.0-to 9.0-fold increase in alpha-MSH. The increase of alpha-MSH levels occurred abruptly and remained constant from days 2 to 14. These observations indicate that TIDA plays an important role in the pituitary release of PRL and alpha-MSH and provide evidence that the release of the two hormones occurs in a differential manner.
Resumo:
This study investigated mechanisms involved in the maintenance of the functional response pattern of the postjunctional alpha(1)-adrenoceptor in vas deferens isolated from rats submitted to acute swimming stress. The plasma corticosterone levels increased approximately three times after the swimming stress in the nontreated rats as well as after swimming stress in the rats pretreated with desipramine (DMI), yohimbine (YO), or DMI with YO. No alteration was detected in the sensitivity to norepinephrine (NE) in the vasa deferentia from the stressed rats or stressed rats treated with DMI or DMI with YO, in relation to their respective control. However, when the vasa deferentia were previously incubated with DMI, a reduction in sensitivity to NE in organs from stressed rats was observed. Vasa deferentia excised from rats pretreated with YO before the swimming stress showed an increase in postjunctional alpha(1)-response that was abolished by prazosin (PZ). Thus, the neuronal uptake, the prejunctional alpha(2)-adrenoceptors (mediating prejunctional inhibition), the occupancy and functional response of the postjunctional alpha(1)-adrenoceptors, and the emotional stress component were very important for the determination of the noradrenergic response pattern in vas deferens from rats submitted to acute swimming stress. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
1. This work investigated the effects of androgens on the norepinephrine sensitivity of vasa deferentia from rats submitted to acute or repeated stress, as well as the participation of alpha(1)-adrenoceptors in the response of intact and bisected vasa deferentia from adult normal rats submitted to acute or repeated stress.2. The acute stress produced subsensitivity to norepinephrine only in intact vasa deferentia from adult normal rats, which was prevented by lack of androgens, suggesting that the sensitivity may be dependent on the physiological level of androgen,3. No change was observed in intact vas deferens sensitivity to norepinephrine in repeated stress, suggesting the occurrence of adaptation to elevated norepinephrine levels or a mild decrease in androgen levers or both.4. The changes in sensitivity observed in acute and repeated stress may also be due to alterations in alpha(1)-adrenergic receptors that are located in the prostatic portion of the vas deferens. (C) 1998 Elsevier B.V.