82 resultados para 291601 Arithmetic and Logic Structures
Resumo:
The main structural and geomorphological features along the Amazon River are closely associated with Mesozoic and Cenozoic tectonic events. The Mesozoic tectonic setting is characterised by the Amazonas and Marajó Basins, two distinct extensional segments. The Amazonas Basin is formed by NNE-SSW normal faults, which control the emplacement of dolerite dykes and deposition of the sedimentary pile. In the more intense tectonic phase (mid-Late Cretaceous), the depocentres were filled with fluvial sequences associated with axial drainage systems, which diverge from the Lower Tapajós Arch. During the next subsidence phase, probably in the Early Tertiary, and under low rate extension, much of the drainage systems reversed, directing the paleo-Amazon River to flow eastwards. The Marajó Basin encompasses NW-SE normal faults and NE-SW strike-slip faults, with the latter running almost parallel to the extensional axes. The normal faults controlled the deposition of thick rift and post-rift sequences and the emplacement of dolerite dykes. During the evolution of the basin, the shoulder (Gurupá Arch) became distinct, having been modelled by drainage systems strongly controlled by the trend of the strike-slip faults. The Arari Lineament, which marks the northwest boundary of the Marajó Basin, has been working as a linkage corridor between the paleo and modern Amazon River with the Atlantic Ocean. The neotectonic evolution since the Miocene comprises two sets of structural and geomorphological features. The older set (Miocene-Pliocene) encompasses two NE-trending transpressive domains and one NW-trending transtensive domain, which are linked to E-W and NE-SW right-lateral strike-slip systems. The transpressive domains display aligned hills controlled by reverse faults and folds, and are separated by large plains associated with pull-apart basins along clockwise strike-slip systems (e.g. Tupinambarana Lineament). Many changes were introduced in the landscape by the transpressive and transtensive structures, such as the blockage of major rivers, which evolved to river-lakes, transgression of the sea over a large area in the Marajó region, and uplift of long and narrow blocks that are oblique to the trend of the main channel. The younger set (Pliocene-Holocene) refers to two triple-arm systems of rift/rift/strike-slip and strike-slip/strike-slip/rift types, and two large transtensive segments, which have controlled the orientation of the modern drainage patterns. © 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes (organically modified electrolytes), were obtained by dissolution of LiClO 4 in siloxane-poly(propylene glycol) matrixes. The dynamic features of these nanocomposites were studied and correlated to their electrical properties. Solid-state nuclear magnetic resonance (NMR) spectroscopy was used to probe the effects of the temperature and nanocomposite composition on the dynamic behaviors of both the ionic species ( 7Li) and the polymer chains ( 13C). NMR, dc ionic conductivity, and DSC results demonstrate that the Li + mobility is strongly assisted by the segmental motion of the polymer chain above its glass transition temperature. The ac ionic conductivity in such composites is explained by use of the random free energy barrier (RFEB) model, which is agreement with their disordered and heterogenous structures. These solid ormolytes are transparent and flexible, and they exhibit good ionic conductivity at room temperature (up to 10 -4 S/cm). Consequently, they are very promising candidates for use in several applications such as batteries, sensors, and electrochromic and photoelectro-chemical devices.
Resumo:
A combined theoretical and experimental study to elucidate the molecular mechanism for the Grob fragmentation of different (N-halo)-2-amino cyclocarboxylates with the nitrogen atom in exocyclic position: (N-Cl)-2-amino cyclopropanecarboxylate (1), (N-Cl)-2-amino cyclobutanecarboxylate (2), (N-Cl)-2-amino cyclopentanecarboxylate (3) and (N-Cl)-2-amino cyclohexanecarboxylate (4), and the corresponding acyclic compounds, (N-Cl)-2-amino isobutyric acid (A), (N-Cl)-2-amino butyric acid (B), has been carried out. The kinetics of decomposition for these compounds and related bromine derivatives were experimentally determined by conventional and stopped-flow UV spectrophotometry. The reaction products have been analyzed by GC and spectrophotometry. Theoretical analysis is based in the localization of stationary points (reactants and transition structures) on the potential energy surface. Calculations were carried out at B3LYP/6-31+G* and MP2/6-31+G* computing methods in the gas phase, while solvent effects have been included by means the self-consistent reaction field theory, PCM continuum model, at MP2/6-31+G* and MP4/6-31+G*//MP2/6-31+G* calculation levels. Based on both experimental and theoretical results, the different Grob fragmentation processes show a global synchronicity index close to 0.9, corresponding to a nearly concerted process. At the TSs, the N-Cl bond breaking is more advanced than the C-C cleavage process. An antiperiplanar configuration of these bonds is reached at the TSs, and this geometrical arrangement is the key factor governing the decomposition. In the case of 1 and 2 the ring strain prevents this spatial disposition, leading to a larger value of the activation barrier. Natural population analysis shows that the polarization of the N-Cl and C-C bonds along the bond-breaking process can be considered the driving force for the decomposition and that a negative charge flows from the carboxylate group to the chlorine atom to assist the reaction pathway. A comparison of theoretical and experimental results shows the relevance of calculation level and the inclusion of solvent effects for determining accurate unimolecular rate coefficients for the decomposition process. © 2002 Published by Elsevier Science B.V.
Resumo:
This work was carried out to determine the internal and external structures of Atta bisphaerica (Forel) nests. Six nests were excavated and during excavation, all data referring to chambers and tunnels were recorded. Three nests had been internally cement-moulded, which enabled a better view of the chamber and tunnel structures. Atta bisphaerica nests presented a similar structural pattern, varying only in the number of chambers as a function of external mound area. Chambers were spherical with two communication tunnels. Internal tunnels had an elliptical section, sometimes circular, indirectly linked to chambers through ramifications and directly through short tunnels. Entrance holes were linked to the area of highest chamber concentration by tunnels from the elliptical section, which led to the nest in a radial manner. Knowledge of the colony's three-dimensional architecture permits successful application of chemical control processes, reduces the quantity of product applied, and consequently diminishes costs and environmental damage.
Resumo:
The study of algorithms for active vibrations control in flexible structures became an area of enormous interest, mainly due to the countless demands of an optimal performance of mechanical systems as aircraft and aerospace structures. Smart structures, formed by a structure base, coupled with piezoelectric actuators and sensor are capable to guarantee the conditions demanded through the application of several types of controllers. This article shows some steps that should be followed in the design of a smart structure. It is discussed: the optimal placement of actuators, the model reduction and the controller design through techniques involving linear matrix inequalities (LMI). It is considered as constraints in LMI: the decay rate, voltage input limitation in the actuators and bounded output peak (output energy). Two controllers robust to parametric variation are designed: the first one considers the actuator in non-optimal location and the second one the actuator is put in an optimal placement. The performance are compared and discussed. The simulations to illustrate the methodology are made with a cantilever beam with bonded piezoelectric actuators.
Resumo:
The aim of this study was to prepare multiparticulate systems of pectin:chitosan (PC:CS) and to evaluate their swelling ratio and the drug release in different environments. PC:CS particles containing triamcinolone were prepared by a complex coacervation/ionotropic gelation method in aqueous environment. The polymer ratio, the calcium concentration and the contact time of the capsules with chitosan dispersion for particles formation and the structures obtained were analyzed. The systems were characterized in relation to morphology, size, swelling, and drug release behavior. The methodology used allowed the production of spherical particles with narrow range of size distribution. The entrapment efficiency for triamcinolone was 84.31 ± 439. It was observed that the particles present a relatively low swelling ratio in acidic medium and a larger swelling ratio in enteric medium. The release profile was dependent on pH and can be related with the swelling ratio.
Resumo:
This paper presents a tool box developed to read files describing a SIMULINK® model and translates it into a structural VHDL-AMS description. In translation process, all files and directory structures to simulate the translated model on SystemVision™ environment is generate. The tool box named MS2SV was tested by three models of commercially available digital-to-analogue converters. All models use the R2R ladder network to conversion, but the functionality of these three components is different. The methodology of conversion of the model is presents together with sort theory about R-2R ladder network. In the evaluation of the translated models, we used a sine waveform input signal and the waveform generated by D/A conversion process was compared by FFT analysis. The results show the viability of this type of approach. This work considers some of challenges set by the electronic industry for the further development of simulation methodologies and tools in the field of mixed-signal technology. © 2007 IEEE.
Resumo:
In this article, the authors measure throughput of sonic diamond microtubes and micronozzles that can work as passive gas flow controllers and flow meters under choking conditions. The behavior of the outlet pressure through the microdevices using an experimental setup with constant volume and constant temperature was determined in order to obtain the critical throughput, the critical mass flow rate, and the discharge coefficients of the diamond sonic microdevices. © 2007 American Vacuum Society.
Resumo:
This paper deals with results of a research and development (R&D) project in cooperation with Electric Power Distribution Company in São Paulo (Brazil) regarding the development and experimental analysis of a new concept of power drive system suitable for application in traction systems of electrical vehicles pulled by electrical motors, which can be powered by urban DC or AC distribution networks. The proposed front-end structure is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode as AC-DC converter, or as DC-DC converter, in order to provide the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards resulting in significant improvements for the trolleybuses systems efficiency and for the urban distribution network costs. Considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, two digital control strategies were evaluated. The digital controller has been implemented using a low cost FPGA (XC3S200) and developed totally using a hardware description language VHDL and fixed point arithmetic. Experimental results from a 15 kW low power scale prototype operating in DC and AC conditions are presented, in order to verify the feasibility and performance of the proposed system. © 2009 IEEE.
Resumo:
Numerical modeling of the interaction among waves and coastal structures is a challenge due to the many nonlinear phenomena involved, such as, wave propagation, wave transformation with water depth, interaction among incident and reflected waves, run-up / run-down and wave overtopping. Numerical models based on Lagrangian formulation, like SPH (Smoothed Particle Hydrodynamics), allow simulating complex free surface flows. The validation of these numerical models is essential, but comparing numerical results with experimental data is not an easy task. In the present paper, two SPH numerical models, SPHysics LNEC and SPH UNESP, are validated comparing the numerical results of waves interacting with a vertical breakwater, with data obtained in physical model tests made in one of the LNEC's flume. To achieve this validation, the experimental set-up is determined to be compatible with the Characteristics of the numerical models. Therefore, the flume dimensions are exactly the same for numerical and physical model and incident wave characteristics are identical, which allows determining the accuracy of the numerical models, particularly regarding two complex phenomena: wave-breaking and impact loads on the breakwater. It is shown that partial renormalization, i.e. renormalization applied only for particles near the structure, seems to be a promising compromise and an original method that allows simultaneously propagating waves, without diffusion, and modeling accurately the pressure field near the structure.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in a structure. One of the critical challenges for practical implementation of SHM system is the ability to detect damage under changing environmental conditions. This paper aims to characterize the temperature, load and damage effects in the sensor measurements obtained with piezoelectric transducer (PZT) patches. Data sets are collected on thin aluminum specimens under different environmental conditions and artificially induced damage states. The fuzzy clustering algorithm is used to organize the sensor measurements into a set of clusters, which can attribute the variation in sensor data due to temperature, load or any induced damage.
Resumo:
In this paper we present a versatile and easy-to-assemble measurement system for structural health monitoring (SHM) based on the electromechanical impedance (EMI) technique. The hardware of the proposed system consists only of a common data acquisition (DAQ) device with external resistors and allows real-time data acquisition from multiple sensors. Besides the low-cost compared to conventional impedance analyzers, the hardware and the software are simple and easier to implement than other measurement systems that have been recently proposed.
Resumo:
Constrained intervals, intervals as a mapping from [0, 1] to polynomials of degree one (linear functions) with non-negative slopes, and arithmetic on constrained intervals generate a space that turns out to be a cancellative abelian monoid albeit with a richer set of properties than the usual (standard) space of interval arithmetic. This means that not only do we have the classical embedding as developed by H. Radström, S. Markov, and the extension of E. Kaucher but the properties of these polynomials. We study the geometry of the embedding of intervals into a quasilinear space and some of the properties of the mapping of constrained intervals into a space of polynomials. It is assumed that the reader is familiar with the basic notions of interval arithmetic and interval analysis. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The micro and macro structures of the caudal vertebrae and muscles of Dendrophidion dendrophis and Mastigodryas bifossatus were described using histological slides, dissections, radiographs, and clearing and double staining of intact, broken, and healed tails. To analyze the relationship among the frequencies of healed tails we established two populations of D. dendrophis and six groups of M. bifossatus. We found that fractures of the tail in the two species are intervertebral, and there are no morphological and/or structural mechanisms that facilitate the urotomy, which is classified as non-specialized pseudoautotomy. The caudal vertebrae of D. dendrophis and M. bifossatus show minor differences in the shape of the condyle, cotyle, and border of the neural spine, and in the size and orientation of the hemapophysis and pleurapophysis. The absence of bleeding at the moment of tail breakage may indicate the presence of sphincters in the veins and arteries of D. dendrophis. The distal part of the last vertebrae retained in healed tails of D. dendrophis and M. bifossatus participates in the healing processes as a possible source of calcium in the formation of a calcified cap. We found high frequency of tail breakage in both species, which occurs in almost the entire length of the tail, with no specific areas of concentration. There was no difference in the frequencies of healed tails among males and females of different populations of D. dendrophis and M. bifossatus. Juveniles have lower breakage frequencies than adults in both species, except for populations of M. bifossatus from the Cerrado and Pampa. © 2013 by the American Society of Ichthyologists and Herpetologists.
Resumo:
Objective: This study investigated the short-term subcutaneous tissue reaction and biomineralization ability of two epoxy-based root canal sealers containing calcium hydroxide (MBP and MBPc) and ProRoot MTA. Materials and methods: Polyethylene tubes containing the materials were implanted into the dorsal connective tissue of Wistar rats (n = 52) for 7 or 30 days; empty implanted tubes served as controls. Specimens were stained with hematoxylin-eosin and von Kossa stain or left unstained for observation under polarized light. Qualitative and quantitative evaluations of all tissue reactions were performed. One-way anova and the Kruskal-Wallis test were used for statistical analysis (P < 0.05). Results: No significant differences were observed among the groups. All three materials induced mild-to-moderate tissue reactions at 7 days, which decreased over time. Dystrophic mineralization and birefringent structures were observed only in the ProRoot MTA ® group. Conclusion: Both MBP and MBPc appear to be biocompatible but do not stimulate biomineralization. © 2012 John Wiley & Sons A/S.