65 resultados para 2 Atoms
Resumo:
The critical number of atoms for Bose-Einstein condensates with cylindrically symmetrical traps were calculated. The time evolution of the condensate was also studied at changing ground state. A conjecture on higher-order nonlinear effects was also discussed to determine its signal and strength. The results show that by exchanging frequencies, the geometry favors the condensation of larger number of particles.
Resumo:
The quantitative effect in the maximum number of particles and other static observables was determined. A deviation in the harmonic trap potential that is effective only outside the central part of the potential, with the addition of a term that is proportional to a cubic or quartic power of the distance was considered. Results showed that this study could be easily transferred to other trap geometries to estimate anharmonic effects.
Resumo:
A quantitative analysis of the critical number of attractive Bose-Einstein condensed atoms in asymmetric traps was studied. The Gross-Pitaevskii (GP) formalism for an atomic system with arbitrary nonspherically symmetric harmonic trap was also discussed. Characteristic limits were obtained for reductions from three to two and one dimensions from three to two and one dimensions, in perfect cylindrical symmetries as well as in deformed ones.
Resumo:
The compound dysprosium(III) 2-metoxybenzoate, {[Dy(2-MeO-Bz)2μ-(2-MeO-Bz)(H2O)2]2·4H2O}n (2-MeO-Bz = 2- methoxybenzoate), was synthesized from a reaction mixture containing DyCl3 and Na(2-MeO-Bz), and characterized by single-crystal X-ray diffraction. The molecular structure showed dinuclear units in which each Dy(III) ion is coordinated by nine oxygen atoms. The carboxylato groups are bound to the dysprosium centers in two modes: bidentate chelating and tridentate chelating-bridging. Besides this, the occurrence of hydrogen bonds involving a coordinated water molecule and carboxylato groups leads to the formation of helicoidal chains along the crystal lattice, resulting in a supramolecular one-dimensional polymer. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The dinuclear azido-palladium(II) complex [Pd2(N3)4(PPh3)2(μ-ted)], where PPh3 = triphenylphosphine and ted = triethylenediamine, was synthesized and characterized by single-crystal X-ray diffraction. The title compound was crystallized in a triclinic system, space group P1 with a = 11.5875(2)Å, b = 13.0817(3)Å, c = 15.2618(3)Å, α = 93.306(2)°, β =110.040(1)°, γ = 98.486(1)°, V = 2134.95(8)Å3, Z = 2. Each Pd(II) center displays a distorted squareplanar coordination environment formed by two N atoms from two trans terminally coordinated azido groups, one P atom from the phosphine and one N atom from the bridging ted ligand. 2008 © The Japan Society for Analytical Chemistry.
Resumo:
The shifts in the four-body recombination peaks, due to an effective range correction to the zero-range model close to the unitary limit, are obtained and used to extract the corresponding effective range of a given atomic system. The approach is applied to an ultracold gas of cesium atoms close to broad Feshbach resonances, where deviations of experimental values from universal model predictions are associated with effective range corrections. The effective range correction is extracted with a weighted average given by 3.9±0.8R vdW, where RvdW is the van der Waals length scale, which is consistent with the van der Waals potential tail for the Cs2 system. The method can be generally applied to other cold atom experimental setups to determine the contribution of the effective range to the tetramer dissociation position. © 2013 American Physical Society.
Resumo:
Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic- sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H 2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC