646 resultados para Resinas odontológicas
Resumo:
A large part of hydraulic hoses is produced on a mandrel. The mandrel has longer length and circular profile being produced by extrusion of polyamide polymer, which in this case is imported, then the process is depending on the import process, which entails high shipping costs and fees. This work studies the production of recycled mandrel, using the mandrel that is out of dimensional to produce hoses. After the production of recycled mandrel mechanical tensile and hardness were performed both in the natural and recycled mandrel to compare them. It was observed that recycled mandrel presents the tensile properties and hardness superior to natural mandrel. Thus, this work will directly impact the company`s business ultimately reducing costs, reducing waste and reducing environmental impacts
Resumo:
In the last decades it has been observed a substantial developing of the electrical energy demand in the societies all over the World. In consequence the electrical energy distribution companies are increasing the quantity of electrical energy through the electrical energy conductor cables, which had grown the sag in the towers of energy transmission. Furthermore, the construction of more transmission towers brings a lot of troubles due environmental protection laws. In this way, looking forward to increase the quantity of electrical energy transmitted through electrical cables conductors, reduce the need of constructing new transmission towers and the sag in them, we suggest in this work the replace of the traditional core of the conductors cables commonly used, made of steel, by a core made by a composite material, which one is made by carbon fibers pultruded with polymeric resins as matrix. In a order to evaluate if the resins more commonly used in structural composites can be applied as matrix to make possible to use the composite material as a core, we made carbon fibers systems pultruded with epoxy, phenolic and polyester resins as matrix and a mechanic and physic-chemistry characterization was done on the systems by Tensile and Poisson tests, differential sprobe calorimetry (DSC), thermogravimetric analysis (TGA) and Fourier transformed infrared spectroscopy (FTIR), following their correspondents standards
Resumo:
A exposição in utero a xenoestrógenos pode aumentar o risco de neoplasias de natureza endócrina na vida adulta. O Bisfenol A (BPA), componente de resinas e plástico, considerado xenoestrógeno e desregulador endócrino, tem sido investigado pelos seus potenciais efeitos adversos para a saúde humana. Como a Genisteína e o Indol-3-Carbinol possuem propriedades que podem inibir neoplasias de natureza endócrina, é possível que também atuem modulando/modificando os efeitos causados pela exposição gestacional ao BPA. O presente projeto teve como objetivos: (1) Avaliar os efeitos da exposição gestacional ao Bisfenol - A (BPA) sobre a morfogênese do útero e ovários na prole de fêmeas Sprague-Dawley (SD) da geração F1; (2) Avaliar se a exposição gestacional a genisteína e ao indol-3-carbinol altera os efeitos do BPA sobre sobre a morfogênese do útero e ovários na geração F1 e (3) avaliar os efeitos da exposição ao BPA, e às associações BPA e genisteína, BPA e indol-3-carbinol em relação à susceptibilidade a carcinogênese induzida pela N-Metil-N-Nitrosuréia (MNU). Portanto, fêmeas prenhas da linhagem SD foram divididas em 7 grupos experimentais e expostas ao Bisfenol A (BPA) (25 ou 250 ug/kg p.c.) DG 10 até o DG 21 (Moral et al. 2008), além de ração basal ou ração contendo genisteína (250 mg/kg) ou indol-3-carbinol (2000 mg/kg) durante toda a gestação. Parte da prole Fêmeas SD foi sacrificada parte no Dia Pós-Natal (DPN) 21 e parte ao final da 25ª semana após iniciação ou não com a MNU. Ao DPN 21 os ovários e útero foram removidos para contagem de folículos e morfometria, respectivamente. A prole restante de fêmeas recebeu uma única dose de MNU (50 mg/kg) ou solução de NaCl (1 ml/kg) no DPN 51 e foi sacrificada na 25ª semana após a aplicação de MNU ou de NaCl. Ovários e útero foi removidos para análises histológicas, incluindo a determinação de lesões proliferativas ...
Resumo:
The weight of a vehicle has always been considered an extreme important factor, because it interferes in the performance, steering, consume, environmental impact, wear of components, among the others. Because of the new demand, consume reduction aim and gases emission increased the necessity to manufacture lighter vehicles, guaranteeing the complying with the gas emission international law. Besides the legal demand, the low weight will certainly be essential for the competitiveness for the next generation of vehicles. It is with this thinking the composite materials have been introduced in the automobilist industry, because those materials show an excellent relation of strength/weight, providing a reduction of consume and the increase of load capacity. Those factors justify the increase of interest of industry and the necessity of optimization of those materials and of their process. For this research, the field of application will be the Baja SAE Project, a project that is fully developed by engineering students, where they build a prototype single seat, off-road category, for use on hilly slopes with obstacle. This research aims to study two key components of the prototype are made of composite materials, analyzing all the processing. In addition, there is the analysis of the viability of this production parts to a Baja SAE vehicle, in order to increase their performance and reduce their weight without reducing the safety and robustness of the prototype. It was possible to achieve weight reduction of the steering subsystem with manufacturing the flywheel hybrid composite (carbon/glass) and the replacement of SAE 1010 steel by hybrid composite (carbon/aramid) in CVT box. The importance of this study is to obtain a good project for the vehicle of technical and scientific manner, contributing to the know-how to the team and providing a basis for optimization for upcoming projects
Resumo:
In order to study resin distribution and homogeneity of composite laminates manufactured by RTM, it was used CYCOM 890 monolithic toughened epoxy as a matrix with two different configurations of intermediated modulus (IM) carbon fibers: Satin Weave (5HS) and non crimp fabric (NCF). The injection parameters were defined based on Thermo Gravimetric Analysis (TG), Differential Scanning Calorimetry (DSC) and rheological analysis. After processing the material, the resin/fiber impregnation was studied using ultrasonic test, Thermo Gravimetric Analysis, Differential Scanning Calorimetry, Dynamic Mechanical Analysis (DMA) and flexural tests. Therefore, it was able to observe an internal residual stress during the cooling process in both laminates, higher in the composite using NCF fabric due to the lack of symmetry, although a good proportion of fiber/matrix has been verified by the lower values of flexural modulus deviation. The DMA enabled the visualization of glass transition and its association with the inter and intra molecular interaction and movement, in which the NCF composite presented better permeability due to the lowest temperature of glass transition, when compared to the Satin Weave composite
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Due to growing concerns for reducing environmental damage caused by the use of non-renewable raw materials, there is a growing demand for research related to aggregate technology with environmental preservation. Thus, the use of non-renewable materials and less aggressive materials has been gaining attention. About composite materials, the exchange of synthetic fibers by natural fibers, especially vegetable fiber as reinforcement, has been increasing, due to its physical-chemical properties such as mechanical strength, nontoxic, low cost, low density, processing flexibility, non-abrasive to the process equipment, requiring simple surface treatments, etc. This objective was to process composites reinforced with long fibers of sapegrass in epoxy matrix and characterize the composites through mechanical tests. Three groups of composites were prepared according to the treatment received by the reinforcement: without treatment, alkali treatment at concentration of 5% w/v and alkali treatment at 10% w/v concentration. The materials were analyzed by tensile and flexural, and tests also optical microscopy and scanning electron microscopy (SEM). The results were statistically analyzed. As the main result, the alkali treatment of 5% in the sapegrass fibers increases the tensile and flexural strength, as a consequence of the improve adhesion between matrix and reinforcement
Resumo:
The nickel-titanium alloys are very attractive and so it is widely used in industry, engineering applications in general and also in biomedical and dental applications. Besides showing the shape of memory effect, biocompatibility and superelastic, the alloy commercially known as Nitinol, has excellent mechanical properties. Most devices used in Brazil have been produced nationally, but using imported material is also necessary, which shows the need of produce the alloy nationally. In this study we have investigated the influence of sintering temperatures and times to obtain nickel-titanium alloys by powder metallurgy alloys and the characterization of the precipitated intermetallic phases by using the post-mix of elemental nickel and titanium in proportion of 49.5% Ti - 50.5% Ni. The samples were sintered at 930ºC for periods of 30, 40 and 50 hours and were characterized by optical microscopy using metallography and x-ray diffraction. The results of the study show that the 50 hours sintering time was the most suitable time for obtaining the alloy, observing a low volume of precipitated intermetallic phases and absence of Ni and Ti residuals
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Engenharia Civil - FEIS
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia - FOA