530 resultados para Dental follicle
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) has become established as a remarkably versatile biomaterial and can be used in a wide variety of scientific applications, especially for medical devices. In this work, the bacterial cellulose fermentation process is modified by the addition of chondroitin sulfate and hyaluronic acid (1% w/w) to the culture medium before the bacteria is inoculated. Besides, biomimetic precipitation of calcium phosphate of biological interest from simulated body fluid on bacterial cellulose was studied. Chondroitin sulfate and hyaluronic acid effects in bacterial cellulose were analyzed using transmission infrared spectroscopy (FTIR), XRD (X-ray diffraction) and scanning electron microscopy (SEM). FTIR analysis showed interaction between bacterial cellulose nanobiocomposites and calcium phosphate. XRD demonstrated amorphous calcium phosphate, carbonated apatite and calcium chloride on bacterial cellulose nanobiocomposites. Monocalcium phosphate monohydrate phase formation [Ca(H2PO4)(2)center dot H2O] are here attested by FTIR, XRD and Ca/P relation.
Resumo:
Autogenous bone grafting is the gold-standard technique for bone augmentation procedures prior to implant placement. If the amount of available intraoral donor bone is insufficient, it is necessary to harvest bone graft from extraoral sites, such as calvaria. Although this technique is well established, only a few case reports show the histological analysis of the grafted bone at the moment of implant placement. This article reports the case of a 48-year-old female patient with a critical atrophic maxillary ridge reconstructed using autogenous calvarial bone graft prior to implant placement, with clinical and histological evaluation. Bone was collected under general anesthesia from the parietal bone. The outer cortical originated the bone blocks, and the medullar bone layer between was collected to be used in the sinus augmentation procedure, together with 5 of the bone blocks triturated. Six months after bone augmentation, 8 implants were placed in the grafted area and 2 biopsies were retrieved (anterior and the posterior regions), allowing the visualization of the bone-remodeling process in the grafted areas. The patient had a stable recovery. Our results showed that although necrotic bone could still be seen in the outer layer of the grafted area, the interface between this necrotic bone and the already remodeled bone was consistent with biocompatibility. Two-year radiographic evaluation showed success of the grafts and the implants in supporting an esthetic and functionally stable prosthesis. Summarizing, calvarial bone grafts are a viable alternative for the attainment of adequate bone volume prior to implant placement.
Resumo:
The head is the most important and specialized region in the body because it contains a range of specialized organs and, because it has interconnections between specialized organs, there is a great overlap of images. Thus, computed tomography (CT) helps in diagnosing diseases in this region, such as oral conditions, as they provide millimetric slices or cuts and demonstrate the relationship between the various anatomical structures involved, in volume and depth. Within dentistry, CT helps in the identification of pathological processes such as infection, tumors, visualization of embedded teeth and bone bed. This study aimed to assess the density of the mandibular alveolar bone at a determined point to later predict how periodontal disease is involved in bone resorption. For this, we performed a blind retrospective study (n = 124) of the CT scan files of dog skulls at FMVZ-UNESP in order to determine the density of the jaw bone using a Hounsfield scale, in the region of the dental apex of the cranial root of the first molar tooth in dogs. The results obtained were evaluated using mean and standard deviation (27.28 +/- 9.53 HU) in order to predict the normal density of the mandibular alveolar bone in the studied region. Thus, this data analysis allows a more concise evaluation of bone resorption of mandibular alveolar bone and, therefore, provides an adequate surgical planning in cases of osteosynthesis given mainly by the presence of installed periodontal disease.
Resumo:
One of the main reasons for the failure in dental implant treatments is the overload, which can cause bone resorption and later, the osseointegration loss in the implant. Therefore, the aim of this study was to analyze the tension generated around dental implants in the rehabilitation of three mandible posterior teeth, varying the connection type, the disposal, and the quantity of implants. The photoelasticity method was used in order to accomplish it. Through photoelasticity, the quantity and localization of the tensions around the implants in the different studied groups were compared (three straight line implants, three offset placement implants, two implants with a mesial cantilever, and two implants with a pontic). The results showed that the tension quantity and disposition around the dental implants of the connection external hexagon and internal hexagon were similar in all groups. In the group where the cantilever was used, an increase of the tension around the implant, adjacent to the cantilever, was observed. From the results it is concluded that the type of connection used in this study did not influence the tension quantity and distribution around the implants; however, the prosthetic configuration with the cantilever use, led to an increase of the tension around the implant, adjacent to the cantilever.