487 resultados para Phenolic resin
Resumo:
Objectives: The objective of this study was to evaluate the clinical performance of 124 non-carious cervical lesion restorations at 12 months. Materials And Methods: Three study groups were formed according to the material and technique used. All teeth received 37% phosphoric acid etching in enamel and dentin. The teeth of Group I received the conventional adhesive system Scotch Bond Multi Purpose, followed by resin composite Filtek Z350; teeth of Group II were restored with resin-modified glass-ionomer cement Fuji II LC; teeth of Group III were restored with the same resin-modified glass-ionomer cement however, before it was inserted, 2 coats of primer of the Scotch Bond Multi Purpose adhesive system were applied to dentinal tissue. The teeth were evaluated by 2 examiners with regard to the factors of retention, marginal adaptation, marginal discoloration, color alteration, presence of marginal caries lesion, anatomic shape, and sensitivity. Results: Application of the Kruskal-Wallis test showed no statistically significant difference for anatomic shape, marginal discoloration, color alteration, caries lesion, marginal adaptation, and sensitivity among the three study groups, but the variable retention presented statistically significant difference at 12 months, with Group III presenting a behavior superior to that of Group II but similar to that of Group I. Conclusion: The analyzed restorations of non-carious cervical lesions presented a good clinical performance at 12 months.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Currently, new methods to reduce biofilm formation on biomaterials are very studied, for example the use of silver nanoparticles, which were bactericidal. However, there are few studies investigating the benefits of these particles in dental restorative materials. Objective: This study aimed to compare in vitro the Streptococcus mutans biofilm formation on conventional light-cured composite resin with that on experimental light-cured composite resin, modified with silver nanoparticles. Material and methods: Discs were produced with either conventional resin (control group) and resin modified with different concentrations of silver nanoparticles, 0.1%, 0.3% and 0.6 % wt. (groups 1, 2 and 3, respectively). The samples were incubated in bacterial suspension (S. mutans) enriched with 20% sucrose to promote biofilm growth on the surfaces. Incubation times were 1, 4 and 7 days. After each period, adherent biofilms were disaggregated by ultrasound. Then, the numbers of viable cells recovered from the biofilms were counted through the serial dilution method. A morphological analysis of biofilm was also performed by Scanning Electron Microscopy. The data were subjected to Anova and Tukey’s test (α = 0.05). Results: The number of viable cells was statistically lower in groups 2 and 3 than in group 1 and control group, after the three incubation periods, without statistical difference between groups 2 and 3. The number of viable cells was statistically lower in group 1 than in control group, after 4 and 7 days of incubation. Conclusion: Resins modified with silver presented reduction of S. mutans biofilm on their surfaces, according to the conditions of this study.
Resumo:
The bamboo waste can be an alternative material to sustain the crescent demand for particleboards, also bringing ecological benefits as reduction of the pressure for raw materials and landfill space demands. In this context, this research aimed to manufacture and determine some physical and mechanical properties of particleboards with bamboo waste particles (Dendrocalamus giganteus), obtained from different sources, bonded with four different percentages of urea–formaldehyde (UF) based resin (6%, 8%, 10% and 12% related to dry material of particles). Response variables investigated were: density; moisture content; thickness swelling in 2 and 24 hours; water absorption in 2 and 24 hours; internal adhesion (STpe); strength in tension parallel to faces (STpa); modulus of elasticity (MOE) and modulus of rupture (MOR). Results permitted to conclude that particleboards as mentioned showed good performance only in the physical properties requirements imposed by Brazilian Standard NBR 14810, but this was not observed to mechanical properties considered. New researches are needed in order to optimize the producing process parameters.
Resumo:
The aim of this study was to analyze the behavior of the flow of heat (temperature) through the thickness of panels LVL (Laminated veneer lumber) produced with phenol formaldehyde adhesive, in laboratorial and industrial scales. Experimental program was conducted with five LVL panels (three produced in laboratorial scale and two in industrial scale) with different arrangements of a mix of commercial veneers from tropical pinus from the south region of Sao Paulo State, Brazil, bonded using phenol formaldehyde adhesive. The temperature inside the panels during the pressing process was evaluated using thermocouples type T (cooper-constantan), installed mostly in the center of the glue lines and connected to a data acquisition system. The graphics of temperature as a function of the time showed a gradual increase of temperature up to pre-set values, remaining constant from them. The temperature reached at the center of the panels was adequate to promote the curing of the adhesive. These pre-set values were similar to the minimum values presented by other authors and manufacturers of these adhesives that affirm that temperatures above 100ºC at the center of laminated panels bonded with phenolic adhesives are sufficient to ensure proper cure of the resin. The time necessary for curing of the adhesives confirmed the validity of practical expressions provided by adhesive manufacturers.
Resumo:
Palicourea rigida H.B.K. (Rubiaceae), a medicinal species commonly known as douradinha, has wide distribution across ecosystems in Central and South America. This species exhibits seed dormancy delaying germination until optimal conditions for seedling growth and development are in place. While dormancy ensures species survival, it also presents a technical problem for developing P. rigida’s plant production program. Thus, the objective of this study was to investigate if secondary metabolites present in seeds influence the seed dormancy of P. rigida. Mature fruits were harvested from the native habitat, in the savanna region of the State of Minas Gerais during February 2009, 2010 and 2011. The content of phenolic compounds in the seed of P. rigida was measured, and the allelopathic effects were assessed using the germination of lettuces as model to detect phytotoxicity. The P. rigida seeds geminated at rates varying between 7% and 31% with a Seed Germination Index (SGI) of 0.09. Data suggest that the phenolic compounds present in the seeds may be responsible for seed dormancy.