626 resultados para Acrylic Resin
Resumo:
Statement of problem. Although most of the physical properties of denture base resin polymerized by microwave energy have been shown to be similar to resins polymerized by the conventional heat polymerization method, the presence of porosity is a problem.Purpose. This study evaluated the effect of different microwave polymerization cycles on the porosity of a denture base resin designed for microwave polymerization.Material and methods. Thirty-two rectangular resin specimens (65 X 40 X 5 mm) were divided into 3 experimental groups (A, B, and C; Onda-Cryl, microwave-polymerized resin) and I control group (T; Classico, heat-polymerized resin), according to the following polymerization cycles: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes, and (T) 74degreesC for 9 hours. Porosity was calculated by measurement of the specimen volume before and after its immersion in water. Data were analyzed using 1-way analysis of variance (alpha = .05).Results. The mean values and SDs of the percent mean porosity were: A = 1.05% +/- 0.28%, B = 0.91% +/- 0.15%, C = 0.88% +/- 0.23%, T = 0.93% +/- 0.23%. No significant differences were found in mean porosity among the groups evaluated.Conclusion. Within the limitations of this study, a denture base resin specifically designed for microwave Polymerization tested was not affected by different polymerization cycles. Porosity was similar to the conventional heat-polymerized denture base resin tested.
Resumo:
Objective: To evaluate the linear polymerization shrinkage (LPS) and the effect of polymerization shrinkage of a resin composite and resin-dentin bond strength under different boundary conditions and filling techniques.Methods: Two cavities (4 x 4 x 2 MM) were prepared in bovine incisors (n = 30). The teeth were divided into three groups, according to boundary conditions: In group TE, the total-etch technique was used. In group EE, only enamel was conditioned, and in group NE, none of the watts of the cavities were conditioned. A two-step adhesive system was applied to all cavities. The resin composite was inserted in one (B) or three increments (1), and tight-cured with 600 mW/cm(2) (80 s). The LPS (%) was measured in the top-bottom direction, by placing a probe in contact with resin composite during curing. Enamel and total mean gap widths were measured (400 x) in three slices obtained after sectioning the restorations. Then, the slices were sectioned again, either to obtain sticks from the adhesive interface from the bottom of the cavity or to obtain resin composite sticks (0.8 mm(2)) to be tested for tensile strength (Kratos machine, 0.5 mm/min). The data was subjected to a two-way repeated measures ANOVA and Tukey's test for comparison of the means (alpha = 0.05).Results: the highest percentage of LPS was found for the TE when bulk fitted, and the lowest percentage of LPS was found in the Hand NE when incrementally fitted. The resin dentin bond strength was higher and the total mean gap width was tower for TE group; no significant effect was detected for the main factor fitting techniques. No difference was detected for the tensile strength of resin composite among the experimental groups.Conclusions: the filling technique is not able to minimize effects of the polymerization shrinkage, and bonding to the cavity watts is necessary to assure reduced mean gap width and high bond strength values. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with an unusual application for a copolymer of styrene-1 % divinylbenzene bearing high amount of aminomethyl groups for anion-exchange and affinity chromatography. The so-called aminomethyl resin (AMR), to date only employed for peptide synthesis, swelled appreciably in water and was used successfully to purify negatively charged peptides. By correlating swelling degree of beads with pH of the media, it was possible to estimate that the AMR amino group pK(a) is approximately 5.5. In addition, the synthesized acetyl-(NANP)(3)-AMR succeeded in the affinity interaction with large antibody molecules related to malaria transmission and raised previously against this dodecapeptide sequence. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Objective: the purpose of this study was to evaluate the effectiveness of various surface treatments for resin-modified glass-ionomer restorative materials by determining dye uptake spectrophotometrically. Method and materials: Two hundred twenty-four specimens, 4.1 mm in diameter and 2.0 mm thick, were made of 3 materials: Vitremer, Fuji II LC, and Photac-Fil Aplicap. Specimens were divided into 15 groups. The positive and negative control specimens remained unprotected, while the experimental specimens were protected with Heliobond light-activated bonding resin, Colorama nail varnish, or surface coatings indicated by the manufacturers of the glass-ionomer materials. Finishing Gloss for Vitremer, Fuji Varnish for Fuji II LC, and Ketac Glaze for Photac-Fil. The disks were immersed in 0.05% methylene blue for 24 hours except for the negative control group, which was immersed in deionized water. After 24 hours, the disks were removed, washed, and individually placed in 1 mL of 65% nitric acid for 24 hours. The solutions were centrifuged and the spectrophotometric absorbance was determined at 606 nm. The dye uptake was expressed in micrograms of dye per milliliter, and the results were analyzed with the Kruskal-Wallis test. Results: There were no differences in dye uptake among the 3 resin-modified glass-ionomer restorative materials, however, all of them required surface protection. Conclusion: the best surface protection for the 3 evaluated materials was obtained with Heliobond light-activated bonding resin.