453 resultados para Energia escura (Astronomia)
Resumo:
The objective of this work is to conduct a comparative study between the fuse key and the single-phase seccionalizador, which are protective equipment used in an electricity distribution networks. This study has also the purpose to reduce the number of electrical power breakdown. Distribution networks are not free from faults, disturbances and failures, then the occurrence of adversities on the network, which may be transient or permanent faults, results in the interruption of electric power. Thus, there are protective systems of distribution networks, which aims to ensure that the electric system continues to function. The incidence of transient faults in the distribution network of this electricity company was used to generate immediate shutdown of customers due to the bad use of fuses as protective equipment by the reclosers. With the use of the fuse switch in the distribution network, there was the immediate shutdown of customers, however, using the single-phase seccionalizador as protective equipment by the reclosers, there are three attempts to restart the electricity power. As the attempts to restart the electricity power are able to eliminate a transient fault, not causing shutdown of any costumer, with the implementation of single-phase sectionalizers to replace the fuses, the number of company shutdowns due to transient faults was reduced by 47.6%
Resumo:
This work presents a self-sustainable lighting system using ultracapacitor as a storage device, replacing the conventional battery, using solar energy as the only energy supplier. A detailed study of solar panels, switched mode converters and ultracapacitors was made, in order to design a circuit capable of capturing solar energy and transfer it efficiently to a bank of ultracapacitors. Later, at nighttime, this energy is used for lighting in LED luminaires which have high luminous efficiency and high reliability index. This work presents the design of the solar panel, ultracapacitors bank, the development of the voltage converter circuit and charger working at the maximum power point of the solar panel. All subsystems were simulated and it was shown that the use of ultracapacitors is feasible to feed a LED lamp with enough brightness for a person to walk at night, for two night shifts, using a capacitive bank with twenty-four ultracapacitors. Replacing the battery by an ultracapacitor allows a faster recharge, with low maintenance costs, since ultracapacitors have a lifetime bigger than batteries; beyond reducing the environmental impact, as they don't use potentially toxic chemical compounds
Resumo:
Pós-graduação em Saúde Coletiva - FMB