588 resultados para Defeito ósseo
Resumo:
Pós-graduação em Química - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Due to complications caused by metallic implants in the replacement of bone tissue, the biological application of ceramics raised and became a viable alternative. The titania has the ability to promote bone tissue regeneration based on its structure, mechanical and biologically properties compatibility. The present work aims at obtaining and characterization of Titania (TiO2) porous ceramics produced by the polymeric sponge method (replica method). Polyurethane sponge with 10 ppi and 15 ppi (pores per linear inch) were used. The process differentiation is the air blower used to remove excess slurry. The ceramics sponges were dried in an oven, then pre-sintered at 1000 o C and sintered at 1450 o C. The effect of direct sintering at 1450 o C was also assessed. The percentage of solids used to prepare the slurry was 40 to 45% by weight. To increase the surface porosity of the sponge, 20% of starch was added. There was difficulty on controlling the thickness of the slurry layers on the sponge which resulted in the variation of samples mechanical resistance. Despite this, the results obtained are quite promising for the proposed use, indicating that it is possible to obtain titania sponges with an apparent porosity of around 60%, a bulk density ranging from 40 to 47% and a compressive strength resistance – that with better control of layers depositions – can vary from 1 to 4 MPa
Resumo:
This work covers the methodology Six Sigma with the application of the steps Define, Measure and Analyze a company of steel tubes, with the objective of identify special causes in the process that drives the creation of the pore defect in the solder. It is highlighted the fact that this work is the base of an continuous upgrade project that aims in eliminating the occurrence of this defect. The motivation is given to the necessity of improving the productivity of the factory, considering that the defect occurs at random and your causes are unknown. This way, it was defined that the problem to analyze, measured the capability of the process in DPMO and analyzed with the aid of graph by attribute P. The results show the process that present special cases, as well as the process considered ideal, This way it was stated that in this work, the processes destabilized and the controlled, allowing a comparison of the characteristics for the elaboration of concise action plans to eliminate the defect. The project must follow the steps Upgrade and control the methodology Six Sigma, in order to ensure success in his execution, aiming to amplify the competitive edge of the business
Resumo:
A presença de falhas, trincas, furos e fadigas causam perturbações nos modos vibracionais (normais) de uma estrutura, por exemplo, tubos, gasodutos e peças metálicas. Uma vez conhecido o espectro de freqüência de uma estrutura instalada em condições normais (sem falhas), é possível acompanhar através, de ensaios não destrutivos uma alteração no espectro de freqüência que pode estar associado a alguma falha mecânica na estrutura.O presente trabalho busca encontrar um padrão nos sinais de resposta dos materiais analisados pela técnica de Vibroacustografia, antes e depois das deformidades causadas. Tentando viabilizar a técnica para a utilização em Ensaios Não Destrutivos (END). E futuramente, para as amostras biológicas, espera-se estender os conhecimentos obtidos dos ensaios anteriores para detecção e prevenção de possíveis fraturas do tecido ósseo
Resumo:
This work aims to analyze the toughness of a welded joint in the presence of a crack through the analysis of maximum tension the material can withstand the presence of this type of defect, since a discontinuity is likely to occur in this type of joint and its detection and its design is simple, using non-destructive testing techniques. The study will be conducted through the CTOD test - Crack-Tip Opening Displacement, with type specimens SE (B) - Single Edge Bend taken from a weld in the L-C position in relation to the length (longitudinal axis) of a test tube. The main idea is to simulate the welding conditions for the manufacture of industrial pipes, made in boiler shops (pipe-shop) within petrochemical plants. These pipes are often subject to operation with flammable and toxic subjected to high pressures and temperatures, where one can break the line can cause irreparable damage to the plant, the environment and the health of surrounding communities. With this study we evaluate whether the weld metal has the same properties as fracture toughness of the base material. This study shows the importance of using a qualified welding procedure for performing quality welds while maintaining the properties of the fracture toughness of the base metal. It was found from the results of tests using a welding procedure described for carrying out welding ensures mechanical properties very close to the base metal, which in terms of design is great, since one can ensure that the weld will the same characteristics of the base metal specified for the assembly of the pipe
Resumo:
The purpose of this research was tested a finite element model (FEM) that represented the creep of a slab during the reheating process of hot rolling. The aim is to prevent creep phenomenon changing the reheating profile with hot tensile test in Gleeble 3500, and, also, understand the former defect crisis. The goal of this work is to have a predictive tool to optimize the reheating process changing parameters (length and thickness). Then, use input parameters obtained from the tests to approximate the solution of the problem aided by Abaqus CAE. The results have showed that the ferritic stainless steel AISI 409 has a lower sensitivity to creep comparing to the stainless steel AISI 409, AISI 430Ti, AISI 441 and AISI 444
Resumo:
Osteosarcoma is the most common primary bone cancer in dogs. It affects most commonly dogs of big or giant breeds with 7 to 8 years and the etiology is unknown. Osteosarcoma is defined as a bone matrix-producing malignant mesenchymal tumor and has a predilection for the metaphyseal region of appendicular skeleton, however, it can affect axial skeleton and soft tissues. Distal radius is the most commonly affected site. The definitive diagnosis of osteosarcoma can be obtained with history, physical examination, radiographs and biopsy. Lung is the most common organ for metastatic disease. The mainly treatment for osteosarcoma is limb amputation and systemic chemotherapy for metastatic disease control. Limb-sparing surgery is a viable alternative to amputation for dogs with concomitant conditions that impede limb amputation. Palliative treatments for osteosarcoma have been studied such as local and systemic radiotherapy, immunotherapy and biphosphonates. This study has the objective of presenting the aspects of diagnosis and treatment for appendicular osteosarcoma