489 resultados para Itinerários terapêuticos
Resumo:
Pythiosis is caused by the oomycetous Pythium insidiosum and affect domestic and wild animals and man. The presence of water and vegetal material is fundamental for its life cycle in nature. The biflagellate zoospore are the infective form of this pathogen. The lesions are generally of granulomatous aspect, which frequently may be contaminated by secondary bacterial infection in skin and subcutaneous tissue. Dissemination to systemic tissues may also occur and it may be due to the spread of the pathogen from cutaneous lesions, as well as a primary source of infection. Clinical signs depend on the affected tissue. Diagnosis of pythiosis is based on the clinical manifestations, histopathological sections and culture of the pathogen. Serological tests may also be employed and more recently molecular biology has been introduced as a sensitive, specific and a rapid method for conclusive diagnosis. Treatment is often difficult and extensive surgery procedures are required, however, depending on the anatomic region and size of the lesion, such procedure is unfeasible and relapses are frequent. Due to the climate changes, which has contributed to increase the incidence of pythiosis, it is necessary the search for new therapeutic protocols
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Pós-graduação em Medicina Veterinária - FCAV
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Many types of food contain ingredients or bioactive compounds that provide health benefits. The collagen is a fibrous protein found in the connective tissue of the body, and it plays a part in the tissues resistance and elasticity. Due to their functional characteristics, this protein has been added into foods in order to achieve therapeutic effects. This paper aimed at showing how the collagen formation occurs, and the beneficial effects of this compound in the organism as well as its characteristics, properties and applications in food.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aloe vera (Aloe barbadensis Miller), popularly known in Brazil as babosa, has a long history of use as medicinal plant for different therapeutic purposes. The components of the plant extract are present in various products of human use, mainly for nutritional and cosmetics purposes. However, some studies suggest that this extract might also have carcinogenic activity. The aloe vera extract is a complex mixture of bioactive compounds. The study of isolated compounds may contribute to elucidate contradictory results about the effects related to the consumption of the plant, as well as their mechanisms of action. One of the most important compound from Aloe vera is aloe-emodin, which is a secondary metabolite generated in the intestinal tract. Putative antimicrobial and antitumor effects were previously attributed to aloe-emodin. Although the exposure of urothelial cells to aloe-emodin was already reported in the literature, only one study showed its effects on urothelial cells, suggesting that aloe-emodin inhibits the viability of T24 cancer cells due to apoptosis induction. Since there is no sufficient information about the effects of aloe-emodin on urothelial cells, and low efficiency in the treatment of bladder cancer currently, the present study aims to evaluate the hypothesis that the treatment with aloe-emodin could impact the behavior of other urothelial cell lines in vitro. Therefore, the in vitro IC50 exposure of aloe-emodin to human immortalized neoplastic urothelial cells will be determinated in order to verify possible differences in the behavior of urothelial cells in vitro treated with aloe-emodin in comparison with untreated cells. Furthermore, differences between cell lines will be also evaluated
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O uso de peptídeos sintéticos para o desenvolvimento de novas drogas é uma estratégia promissora no campo da biotecnologia. Peptídeos derivados de toxinas bacterianas intracelulares, produzidas por sistemas de morte pós-segregacional (PKS) tais como CcdB e ParE são exemplos dessa estratégia. Porém, moléculas com estrutura peptídica derivadas de toxinas bacterianas apresentam sérios problemas na aplicação terapêutica por apresentarem baixa solubilidade e difícil permeabilidade em membranas bacterianas. O objetivo desse estudo consistiu no desenvolvimento e aprimoramento de sistemas nanoestruturados (lipossomas) que permita a imobilização de análogos peptídicos da toxina CcdB e sua consequente translocação no citosol bacteriano, permitindo que os mesmos atinjam seus alvos celulares, enzimas DNA girase e Topoisomerase IV. Lipossomas do tipo SUV (small unilamellar vesicles), foram preparados pela técnica de extrusão-evaporação variando-se suas formulações. Desta forma, pretendeu-se avaliar a eficiência de encapsulação dos peptídeos através de técnicas de cromatografia líquida de alta eficiência (CLAE) e espectroscopia de UV-Vis e fluorescência. Após testes de eficiência de encapsulação, os lipossomas contendo os análogos peptídicos encapsulados, foram submetidos a ensaio de inibição de crescimento em meio líquido para duas espécies bacterianas: Staphylococcus aureus e Escherichia coli. Resultados demonstraram que a utilização de sistemas nanoestruturados é de grande importância para viabilizar a aplicação desta classe de biomoléculas em estudos terapêuticos, permitindo assim, que tais peptídeos possam ser utilizados como antibióticos promissores, se associados a sistemas de transporte e liberação controlada de moléculas peptídicas.
Resumo:
Atherosclerosis is a chronic inflammatory disease characterized by accumulation of lipid and fibrous components in arterial vessels, giving rise to atheromas. Development of Atheromatou plaques leads to arterial steatosis, triggering ischemic events. Atherotrombosis has a strong correlation with atherosclerosis, where rupture of atheromatous plaques cause release of vessel wall's pro-thrombotic components, activating platelet aggregation and thromosis. Due to the major role played by platelets on thrombus-embolic conditions, drugs that inhibit platelet aggregation demonstrate great relevance for atherothrombosis prevention, reducing patient mortality. Currently, there are a variety of drugs acting on several different targets, preventing platelet activation. However, these therapies demosntrate side effects such as thrombocytopenia, neutropenia, hemorrhage and low oral availability. Thus, the application of molecular modifications such as hybridization can produce novel, more efficient antiplatelet aggregation inhibitors. In this project we describe the synthesis and characterization of novel N-acilhydrazone compounds, acting through multiple mechanisms such as platelet calcium chelation and nitric oxide donation by furoxanic subunits. Furthermore, we demonstrate that such compounds exhibit biological activity in in vivo bleeding time, in vitro antiplatelet aggregation and in vivo antinociceptive assays. Therefore, novel N-acilhydrazone compounds demonstrate potential as antiplatelet drugs for atherothrombosis prevention.