44 resultados para turbulent combustion
Resumo:
The increased fuel economy and driveability of modern internal combustion engine vehicles (ICEVs) are the result of the application of advanced digital electronics to control the operation of the internal combustion engine (ICE). Microprocessors (and micro controllers) play a key role in the engine control, by precisely controlling the amount of both air and fuel admitted into the cylinders. Air intake is controlled by utilizing a throttle valve equipped with a motor and gear mechanism as actuator, and a sensor enabling the measurement of the angular position of the blades. This paperwork presents a lab setup that allows students to control the throttle position using a microcontroller that runs a program developed by them. A commercial throttle body has been employed, whereas a power amplifier and a microcontroller board have been hand assembled to complete the experimental setup. This setup, while based in a high-tech, microprocessor-based solution for a real-world, engine operation optimization problem, has the potential to engage students around a hands-on multidisciplinary lab activity and ignite their interest in learning fundamental and advanced topics of microprocessors systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic - Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work investigated the operating conditions of a 'scramjet' through numerical simulation considering two-dimensional steady flow. Using a commercial software, FLUENT, cases of inviscid flow with and without fuel injection, turbulent flow without fuel injection, turbulent flow with fuel injection and without burning, and finally turbulent flow with fuel injection and burning are simulated
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Analysis of oxy-fuel combustion as an alternative to combustion with air in metal reheating furnaces
Resumo:
Using oxygen instead of air in a burning process is at present being widely discussed as an option to reduce CO2 emissions. One of the possibilities is to maintain the combustion reaction at the same energy release level as burning with air, which reduces fuel consumption and the emission rates of CO2. A thermal simulation was made for metal reheating furnaces, which operate at a temperature in the range of 1150-1250 degrees C, using natural gas with a 5% excess of oxygen, maintaining fixed values for pressure and combustion temperature. The theoretical results show that it is possible to reduce the consumption of fuel, and this reduction depends on the amount of heat that can be recovered during the air pre-heating process. The analysis was further conducted by considering the 2012 costs of natural gas and oxygen in Brazil. The use of oxygen showed to be economically viable for large furnaces that operate with conventional heat recovering systems (those that provide pre-heated air at temperatures near 400 degrees C). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
One of the energy alternatives that provide utility, flexibility, cleanliness and economy is biomass, such as forest waste (wood) and agricultural (sugarcane bagasse, rice husks, coffee pods, etc.). However, with its increasing supply and use grows also the concern of industries to invest in monitoring and control of emissions into the atmosphere, because during biomass burning are emitted as exhaust gases, fine particles known as particulates, which greatly contribute to the triggering of serious health problems to humans, in addition to the environmental damage. With that, this work aimed to conduct a monitoring of particulate and gaseous pollutants emissions to the atmosphere from the burning of various types of biomass used by industries. The equipment used for sampling were the optical monitor DataRAM 4 and the Unigas3000 + gas sampler. The results showed that biomass coffee pods presented the greatest concentration of particulates (485119 μg m-3) with particle diameters between 0.0602 μm and 0.3502 μm, i.e. the most ultrafine particles, harmful to human health and the environment. The largest emissions of CO and NOx were observed, respectively, for the coffee pods (3500 ppm) and for the rice husk (48 ppm). As for the superior calorific value (PCS), the best of fuel, with higher PCS, was the Eucalyptus grandis.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)